

School: School of Science

Program/s: M.Sc. LS

Year: 2nd Semester: 3rd

Examination: End Semester Examination

Examination year: December - 2021

Course Code: LS245 Course Name: Microbial Biochemistry

Date: 02/12/2021

Time: 8.30 am to 10.30 am

Total Marks: 40

Total Pages:

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

→ *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Mark s	COs*	BTL#
Q.1	Choose the correct answer.			
No.			COs* CO1, CO2, CO3, CO4. CO5	BTL# BT1, BT2, BT3, BT4
	 4. Select odd one out from the following; A. Amino Acid B. Alkaloids C. Carbohydrates D. Nucleotide 	. %		

Q.2	Do as directed.			T
2.2	1. similar to chlorophylls in containing four pyrrol rings but	•		
787	different as they lack Mg and the phytol chain.			8
202	2. Purple and green bacteria cannot use water (H ₂ O) as an electron			, to
20	donor in noncyclic photophosphorylation as they lack			
	donot in noneyene photophosphorylation as they lack			_
	3interrupt biosynthesis of isoprene by inhibiting FPPS.			
	4 is the the first β-lactam antibiotic was			
	synthesized by Staudinger in 1907.		CO1,	
a =	5is the substrate for lysine biosynthesis.	2. 2	CO2,	BT1,
19 235 1925 - 41 - 13	6. The chemical process in which transfer of the amine group take	12	CO3,	BT2,
3	place is known as		CO4.	BT3,
	7. In green bacteria, serves directly as electron donor		CO5	BT4
	for dark reaction	=		
	8 autotrophs oxidize reduced inorganic compounds	e,		
	such as iron, nitrogen or sulfur molecules to derive both energy	,00		
N3 82	and electrons for biosynthesis.			
	9. "Antibiotics can distinguish between beneficial and harmful			
	bacteria" - True/False - Justify.			
	10. "Bacteria can only synthesize isoprene units by the mevalonate			
	pathway" – True/False – Justify.			
Q.3	Answer <u>any four</u> from the following in brief.		у н	
	1. How does chlorophyll a differ from chlorophyll b?		COL	8 al
	2. How do lithotrophs differ from organotrophs?	, ,	CO1, CO2,	BT1,
	3. Write down principle of Acetylene Reduction assay along with its	12	CO2,	BT2,
	significance.	12	CO4.	BT3,
	4. Define secondary metabolites and its roles along with its		CO4.	BT4
	examples.		003	
	5. Classify the antibiotics with examples and its role.	4		# #
Q.4	Answer <u>any three</u> from the following in detail.		*	
	1. How is the acetyl-CoA generated from fatty acid breakdown		CO1,	20,
	converted to four carbon compounds in plants and microbes?	ı	CO1,	BT1,
	2. Define fermentation. Explain in detail ethanolic fermentation	12	CO2,	BT2,
	process.	14	CO4.	BT3,
	3. Write down the detail note on Streptomycin: Structure,		CO4.	BT4
	Biosynthesis, Process and Uses of Streptomycin.		003	
	4. Explain Mavalonic acid pathway (MVA) in detail.	29		

***********End of Question Paper*******