Enrollment No._

UNIVERSITY a UGC recognized University

School: School of Science MSc-LS

Program: Year: 2nd Semester: 3rd

Examination: End Semester Examination **Examination year:** December - 2021

Course Code:	LS226 Course Nam	e: Metabolism, Regulation and Integration		
Date:	01/12/2021	Total Marks:	40	
Time:	08:30 am to 10:30 am	Total Pages: (02	

Instructions:

➔ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

• Draw labelled-figures wherever it is necessary.

* COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping >

Q. No.	Details	Marks	COs*	BTL#
Q.1	Objective-based questions. (All mandatory; 1M x 16Q = 16M)	16	÷	
	1) Define: Payoff phase of glycolysis.	0		
	2) Define: Oxidation and reduction in terms of electron.			
	3) Differentiate between the role of uncouplers and inhibitors of ETC.			1
	Examples not required.		3	
	4) Differentiate between cofactor and coenzyme with examples.			
	5) Explain the role of Q cycle in ETC.		8 7	
	6) Monosaccharides other than glucose funnel in glycolysis through			
а 2	pathway.			
	7) and are products of pentose phosphate pathway.		C01,	
л 2 	8) Explain the unit of enzyme activity.		CO2, CO3,	BT1, BT2,
×	9) What is initial velocity of enzymes?		CO4, CO5,	BT4, BT5
2	10) Write the role of urea cycle.	8 C	C06 -	
	11) Explain the role of lipase with example.			2 ⁴
e ^{ll} e e	12) Differentiate between the role of NADH and NADPH in metabolism.			ц.,
2 2 29	13) sugar primarily present in human blood glucose.			
	14) Explain the role of beta oxidation in fatty acid metabolism.	2		
	15) How desaturase and elongase are different from each other in fatty acid			
	metabolism?			
	16) Explain the significance of isoenzymes in organism with examples.			

Q.2	Short answers. (Any Six; 2M x 6Q = 12M)	12	2	
100 - 100 100 - 100 100	1) Explain: ATP synthetase complex.			
	2) Explain: ROS generation and neutralization process.		CO1.	2
	3) Describe: Glycogen storage disease.		CO2, CO3,	BT1,
	4) Differentiate between the two phases of pentose phosphate pathway.		CO4, CO5,	BT3, BT4
	5) How enzyme lowers the activation energy to enhance rate of reaction?		C06	
	6) Explain different types of lipoproteins.			
	7) Describe the functioning of acetyl-CoA carboxylase enzyme.	a		
Q.3	Long answers. (Any Three; 4M x 3Q = 12M)	12		
9 - 11 9 - 11	1) Explain in detail: Complex I to IV of Mitochondrial Respiratory Chain.		C01.	
а. 8-й	2) Explain with proper rationale: Regulation of glycogen metabolism.		CO2, CO3,	ВТ2, ВТ3.
14	3) Explain with proper rationale: How glycolysis & gluconeogenesis are		CO4, CO5.	BT3, BT4, BT5
	reciprocally regulated?		CO6	
	4) Explain in detail: The full metabolism of vigorously active muscle.			
L				

•.

•

*************End of Question Paper*********