School: School of Science Program/s: **BMS** Semester: 3rd Year: 2nd **Examination:** End Semester Examination Examination year: December - 2021 Course Name: Biochemistry 2: Metabolism Course Code: BM304 Total Marks: 40 Date: 02/12/2021 **Total Pages:** Time: 8.30 am to 10.30 am ## Instructions: → Write each answer on a new page. → Use of a calculator is permitted/not permitted. → * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping | Q.
No. | Details | Marks | COs* | BTL# | |-----------|--|---------|------|-----------| | Q.1 | Do as directed. | | - 10 | 8 | | 2.1 | 1. The NADH formed during the TCA cycle enters the electron | | - | | | | transport system at which site? | | | | | | A. NADH dehydrogenase | = = | | | | | B. cytochrome | 2.0 | 8 8 | | | | C. coenzyme Q | 8. | | | | | D. ATP synthase | 2 2 2 2 | | | | | 2. When branched chain amino acids are deaminated in muscle, the | e es | | , N | | | ammonia produced is mostly: | 35 ser | 5, | 101.0 | | | A. Converted into arginine and released from the muscle | | | 6 5/
5 | | | B. Converted into alanine and glutamine and released from | | CO1, | D.T.1 | | | the muscle | | CO2, | BT1, | | | C. Converted into urea and released from the muscle | 16 | CO3, | BT2, | | | D. Used to synthesise purines and pyrimidines in the muscle | | CO4. | BT3, | | | 3. In the pentose phosphate pathway, the major products are | @ = | CO5 | BT4 | | | 3. In the pentose phosphate pathway, the major products are | | | | | | A. Ribulose and NADPH | J. | ž | | | | B. Ribulose and NADH | 5 | 9 N | | | | C. Ribulose and NAD ⁺ | | | | | | D. Ribulose and ATP | | | | | | 0 1: | 0.00 | | | | | | | | | | | 5. Ammonia Is Incorporated into Biomolecules through | | | | | | and | | = | | | | 6 Enzymes are responsible for the breakdown of | ist. | | | | | amino acid. | | | 1 | | \$ 1.000 | | | | | |----------|---|----|------------------------------|-----------------------------| | | Oxidation of palmitic acid (C16) involves eight rounds of boxidation and yields seven molecules of acetyl-CoA — True/False Fructose-1,6-Bisphosphate negatively regulates pyruvate kinase — True/False Match the following— a. insulin b. high concentration of NADPH c. 1st phase d. 2nd phase Inhibits HMP shunt Discuss the fate of pyruvate in presence and absence of oxygen molecule Why is the formation of ketone bodies increased during starvation? Why does muscle glycogen not contribute its glucose to blood? | | | | | Q.4 | Answer <u>any four</u> from the following in brief. (Use chart or figure wherever required) 1. Briefly discuss the hormonal regulation of glycolysis. 2. Define the Chemiosmosis theory. Explain Working mechanism of ATP synthase. 3. Define secondary metabolite and its role with examples. 4. Briefly discuss the role of regulation of glyoxylate pathway. 5. State the name and function complex 1, complex 2 and electron transporters of oxidative phosphorylation pathway. | 12 | CO1,
CO2,
CO3,
CO4. | BT1,
BT2,
BT3,
BT4 | | Q.5 | Answer any three from the following in detail. (Use chart or figure wherever required) State the mechanism by which liver regulate the glucose level in blood in detail. Explain urea cycle in detail and its significance. Predict the major consequences of deficiencies of the following; (i) Hexokinase in adipose tissue (ii) Glucose-6-phosphatase in liver (iii) Defective glycogenin. Discuss the how the glycogen metabolism is regulated in fed and starved condition. | 12 | CO1,
CO2,
CO3,
CO4. | BT1,
BT2,
BT3,
BT4 | ************End of Question Paper********