School: School of Science Program/s: BSc Chemistry Year: 3rd Semester: 5th **Examination:** End Semester Examination Examination year: December - 2021 Course Code: CH311 Course Name: Organic Chemistry-III Date: 01/12/2021 Total Marks: 40 Time: 11:30 am to 01:30 pm **Total Pages:** 3 ## Instructions: → Write each answer on a new page. → Use of a calculator is permitted/not permitted. → *COs=Course Outcome mapping. #BTL=Bloom's Taxonomy Level mapping | Q.
No. | Details | Marks | COs* | BTL# | |-----------------|--|-------|----------|------------| | Q.1 | Choose the correct answer (s) from the followings. | 7 | CO1 | BT1 | | | 1. Replacement of the diazonium group by -Cl using cuprous chloride is generally referred to | | CO2 | BT2
BT3 | | | as | 8 | CO4 | BT4 | | D ₁ | (a) Sandmeyer reaction | | CO5 | | | | (b) Rosenmund reaction | | | | | | (c) Grignard reaction | 7. | | _ | | | (d) Cannizzaro reaction | | 15 | | | | 2. Predict and write the preferred product for following reaction with appropriate | | | | | 1.0 | and this the preferred product for following reaction with appropriate | | | | | | stereochemistry (in accordance with the Woodward-Hoffmann) from given option. | | | | | | 25 °C ???? | , | | | | | | | | | | 8 | | 8 | | | | | | | | | | | a) () () () () () () () | | | | | | H H | | ė. | | | | 3. Choose the appropriate reagent and condition for following reaction | | | | | | and appropriate reagent and contained for following reaction. | | | | | | $\stackrel{\oplus}{N_2}$ $\stackrel{\bigcirc}{Cl}$ OH (a) hot dilute H_2SO_4 (b) H_3PO_2 | * | - di
 | | | - 2 " | (b) 113FO2
(c) NaNO2, HCI | | | | | 5 | (d) HBr + Cu | | | | | * ₁₈ | NO ₂ NO ₂ | | | | | | | | | | | | 4. Which one of the following is HOMO for 1,3-butadiene in excited state? | T a | - | | | - | | | | | | | $(a) \begin{pmatrix} c & c & c \\ c & c \end{pmatrix} \begin{pmatrix} c & c \\ c \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} \begin{pmatrix} c \\ c \end{pmatrix} $ | | 8 | * | | | | | | 8 4 | | | | | - | | | | | | | | | | | | | | | | 5. Predict and write the preferred product for following reaction. | | | | |----------------|---|---|------------|------------| | E 22 | $\frac{O}{I}$ $h\nu$ | | | | | T _B | H ₃ C | | | | | - 2 | | | | | | 100 | | | | 28 | | | a) H ₃ C b) H ₃ C c) H ₃ C d) H ₃ C | | | | | | a, 3- a, H ₃ C | | | | | | | | | * | | | 6. With respect to number of σ -bond formed or broken, which one of the following is true for | 9 | | | | | electrocyclic reaction? | | | . 8 | | | (a) one new σ-bond formed as another σ-bond breaks | | | ,22 | | | -(b) two new σ-bonds are formed or broken | k | | ^ | | | (c) two new σ-bonds are formed and no σ-bond is broken | | | 22 | | | (d) one new σ -bond formed and no σ -bond is broken | | | | | | | | | | | | 7. With respect to electrophilic aromatic substitution reaction, which one of the following is | | | | | | ortho, para directing group? | | и, | | | | (a) -NO ₂ (-Nitro group) | | | | | | (b) -COOH (-Carboxylic Acid group) | | 12.5 | | | | (c) -CHO (-Aldehyde group) | | | | | - | (d) -NH ₂ (-Amino group) | | = 1 = 1 | | | | | | - v | | | | | | | | | Q.2 | Each of the following reactions involves one or more concerted steps that take place in | 5 | CO1 | BT1 | | | accordance with the Woodward-Hoffmann rules. Predict the product in each case with | | C02
C03 | BT2
BT3 | | | preferred stereochemistry, wherever it is applicable. (Any Five) | | CO4 | BT4 | | | | | CO5 | - 1 | | | CH ₃ OAc | | | | | | a) $\begin{pmatrix} H \\ + \end{pmatrix} \begin{pmatrix} 80 \text{ °C} \\ + \end{pmatrix}$ | | | | | | monocyclic N.COOEt | | | | | - | CH ₃ compound | | | | | | 2,4,6,8-decatetraene | | | | | | | | | | | | b) $h\nu$ e $+$ MeOOC ——COOMe ——E | | | | | | | | | | | | e . Ph | | | | | | √. Į | | | | | a, a | c $h\nu$ c CH_3 $h\nu$ | | | | | ET. | -20 °C _{f)} CH ₃ | | - " | | | | | | | | | Q.3 | Complete the following reactions and predict the major product. (Any Four) | 6 | C01 | BT1 | | | estingles the following reactions and predict the major product. (Any Four) | O | CO2 | BT2 | | | D ₂ | | | | | 1 | Br i) Mg, ether | | CO3 | BT3
BT4 | | | a) CH ₂ CI NaCN H ₂ , Ni, 140 °C ii) Mg, ether ii) CO ₂ ? | | CO3
CO4 | BT3 | | | CH ₂ CI NaCN H ₂ , Ni, 140 °C ii) Mg, ether ii) CO ₂ | | CO3 | BT3 | | | a) CH ₂ CI NaCN H ₂ , Ni, 140 °C ii) Mg, ether ii) CO ₂ ? | | CO3
CO4 | BT3 | | = | a) CH ₂ CI NaCN ? H ₂ , Ni, 140 °C ? d) Br i) Mg, ether ii) CO ₂ ? iii) H ⁺ Note: write the final product | | CO3
CO4 | BT3 | | | a) CH ₂ CI NaCN ? H ₂ , Ni, 140 °C ? d) Br i) Mg, ether ii) CO ₂ ? Note: write the final product Note: write the final product | | CO3
CO4 | BT3 | | | a) CH ₂ CI NaCN ? H ₂ , Ni, 140 °C ? d) Br i) Mg, ether ii) CO ₂ ? Note: write the final product Note: write the final product CI i) NaN ₃ ii) H ₂ O, heat | | CO3
CO4 | BT3 | | | a) CH ₂ CI NaCN ? H ₂ , Ni, 140 °C ? d) Fr i) Mg, ether ii) CO ₂ ? Note: write the final product KOH H + HCHO Consistence ? + ? CI i) NaN ₃ | | CO3
CO4 | BT3 | | | a) CH ₂ CI NaCN ? H ₂ , Ni, 140 °C ? d) Br i) Mg, ether ii) CO ₂ ? Note: write the final product Note: write the final product CI i) NaN ₃ ii) H ₂ O, heat | | CO3
CO4 | BT3 | | | a) CH ₂ CI NaCN ? H ₂ , Ni, 140 °C ? d) Br i) Mg, ether ii) CO ₂ ? Note: write the final product Note: write the final product CI i) NaN ₃ ii) H ₂ O, heat | | CO3
CO4 | BT3 | | | a) CH ₂ CI NaCN ? H ₂ , Ni, 140 °C ? d) Fr i) Mg, ether ii) CO ₂ ? Note: write the final product KOH Cannizzaro reaction ? + ? NH ₂ NaNO ₂ , H ₂ SO ₄ H ₂ O, H ⁺ , Heat | | CO3
CO4 | BT3 | | | a) CH ₂ CI NaCN ? H ₂ , Ni, 140 °C ? d) Fr i) Mg, ether ii) CO ₂ ? Note: write the final product KOH Cannizzaro reaction ? + ? e) CI i) NaN ₃ ii) H ₂ O, heat ? | | CO3
CO4 | ВТ3 | | Q.4 | Do as directed. (Any Four) | 10 | C01 | BT1 | |-------|---|-----|------------|------------| | | (i) Write the sequence of reactions (with reagent and any special conditions) necessary to | | CO2
CO3 | BT2
BT3 | | | convert toluene into p-toluic acid (Hint: via diazonium salt). | | CO4 | BT4 | | | (ii) Aryl diazonium salts are stable at lower temperature compared to alkyl diazonium salts. | | CO5 - | | | | Justify | | | | | | (iii) With respect to pyrrole and pyridine, which one is more basic? Justify your answer. | | | | | | | | | | | | | | | | | - | H N | | | | | | pyrrole pyridine | | | | | | (iv) The -OH of carboxylic acid tends to release a hydrogen ion so much more readily than | | (2) | | | | the -OH of an alcohol. Justify. | | | | | | (v) (a) State Woodward-Hoffmann rule for electrocyclic reaction. (b) Draw HOMO for | 14 | 10 | | | | 1,3,5-hexatriene in ground state and for 1,3,5,7-octatetraene in excited state. | | * | | | | (vi) Write equations for the reaction of <i>p</i> -nitrobenzenediazonium sulfate with: | | 8 8 | | | | (a) Hot dilute H ₂ SO ₄ (c) H ₃ PO ₂ | | | | | . * | (b) HBF ₄ , then heat (d) KI | | | | | OF | De se diverted (Any Servi) | 40 | CO1 | BT1 | | Q.5 | Do as directed. (Any Four) | 12 | CO2 | BT2 | | | (i) 2-Methyl benzophenone is termed as photostabilizer. Explain with the reaction mechanism. | | CO3 | BT3
BT4 | | | CH ₃ | | CO4
CO5 | BT5 | | | | | | | | 1 | | | 5 | | | | | | | | | | 2-methyl benzophenone | , | | | | | (ii) Write the sequence of reactions (with reagent and any special conditions) necessary to | 6 | | | | | convert Toluene into <i>m</i> -Bromotoluene (Hint: via diazonium salt). | | | | | | (iii) Write the general mechanism of Baeyer-Villiger oxidation with suitable example. | | | | | | (iv) Predict the product(s) of the following reactions. If more than one product is formed, tell | | | | | | which is major. | | | | | | CHal (excess) | | | | | - ANV | $CH_3I \text{ (excess)} \qquad A \qquad Ag_2O, H_2O \qquad B \qquad Heat \qquad C$ | | | | | | A B C | | , | | | | | | | | | | (A) Constant prosting of the stimulation that will be said to the laboratory in | | | | | | (v) Suggest a practical situation that might arise in the laboratory in which you would need to | | | | | | (a) separate an aldehyde from undesired non-carbonyl materials; (b) remove an aldehyde | a a | | | | | that is contaminating a non-carbonyl compound. Describe how you could carry out the | | . | | | | separations, telling exactly what you would do and see. | | | | | | | | | | ************End of Question Paper*******