Enrollment No.

A UNIVERSITY a UGC recognized University

School:School of Engineering and TechnologyProgram/s:BSC Data ScienceYear:2ndExamination:End Semester:Examination year:December - 2021

Course Code:DS215Course Name:Discrete MathematicsDate:07/12/2021Time:8:30 am to 10:30 am

Total Marks:40Total Pages:2

Instructions:

→ Write each answer on a new page.

- → Use of a calculator is permitted.
- → Draw all relevant waveforms in answer sheet only.
- → * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Marks	COs*	BTL#
Q.1	Attempt <u>ANY 10</u> from the following:	[10]		an Weather Survey Contractor
Α.	What is a proposition?	1	C01	1
В.	A compound proposition that is always true is called a	1	C01	1
C.	Let $P(x)$ be the statement "x can speak Gujarati" and let $Q(x)$ be the statement "x	1	CO2	3
	knows the computer language HTML." The domain for quantifiers consists of all the			
4	Data Science students at NUV. Convert the proposition $\exists x (P(x) \land \neg Q(x))$ into English sentence.			
D.	What rule of inference is used in the following arguments?	1	CO2	2
	"If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed."			
	Write your answer in the box given below.			
E.	What is the meaning of a contrapositive statement?	1	C01	1
F.	(True/False) A relation $R = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$ on set	1	CO3	4
	$A = \{1, 2, 3, 4\}$ is anti-symmetric.			
G.	Boolean algebra is a and lattice. Write the appropriate type of lattice in the blanks.	1	CO3	, 1
Н.	What is the bitwise AND of the bit strings 1011 1100 and 0101 0101 ?	1	CO4	5
I.	(True/False) A pseudograph is a directed graph having multiple edges and loops.	1	C05	2
J.	Give example of any one non-planar graph. (Write name only, do not draw.)	1	C05	1
K.	Draw a complete graph K_4 having 4 vertices.	1	C05	5
L.	There are at most leaves in a 3-ary tree of height 5.	1	C06	1
Q. 2	Attempt <u>ANY 5</u> from the following:	[10]		
Α.	Write the precedence of all the logical operators.	2	C01	1
B.	Show that $\sim (p \Rightarrow q)$ and $p \land \sim q$ are logically equivalent using logical identities.	2	CO2	4
C.	Calculate the number of relations on a set with 4 elements.	2	CO3	4
D.	Draw the Hass diagram of the poset of set of divisors of 12, with "divides" relation.	2	CO3	3
E.	Derive complement of 2 in a lattice $L = \{1, 2, 3, 6\}$ with relation "Divides".	2	CO3	5

	F.	Define the Euler circuit and the Hamilton circuit.	2	C06	5
	G.	Determine how many edges are there in a graph with 8 vertices each of degree five?	2	C05	4
Q.	3	Attempt <u>ANY 5</u> from the following:	[20]		
	A.	Explain any two logical operators (logical connectives) with one example each.	4	CO2	1
	B.	Prepare a truth table of $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ and determine whether it is	4	CO2	6
		tautology, contradiction or contingency.			
	C.	Consider a poset ({3, 5, 9, 15, 24, 45},) with "divides" relation.	4	CO3	4
		(i). Find the maximal elements.			
		(ii). Find the minimal elements.			
		(iii). Find all upper bounds of {3, 5}.			
		(iv). Find the least upper bound of {3, 5}, if it exists.			
		(v). Find the greatest lower bound of {15, 45}, if it exists.			
	D.	Construct a circuit from inverters, AND gates, and OR gates to produce output	4	CO4	6
		$\overline{(\bar{x}+z)(y+\bar{z})}$.			
	E.	Find (i) the number of vertices, (ii) the number of a^{a}	4	C05	4
		edges, (iii) degree of each vertex, (iv) neighborhood			
		of each vertex in the given graph. Also (v) Identify all			
		isolated and (vi) pendant vertices.			
		e d			
	F.	Define (i) Dual of a map	4	C06	6
		(ii) Graph Coloring			
		(iii) Chromatic number $\begin{pmatrix} F \\ C \end{pmatrix} = \begin{pmatrix} F \\ C \end{pmatrix} = \begin{pmatrix} F \\ C \end{pmatrix}$			
		Draw dual of the map and determine its chromatic			
	10000	number:			
	G.		4	C06	4
		The rooted tree T with root a is shown in the			
*		figure. Find			
		(i). The siblings of <i>l</i> ,			
		(ii). All ancestors of d ,			
		(iii). All descendants of <i>g</i> ,			
		(iv). All internal vertices,			
		(v). All leaves.			
		d e k l m			

**************End of Question Paper**********