

NAVRACHANA UNIVERSITY

Interfectiona UGC recognized UniversitySchool:School of Engineering and TechnologyProgram/s:BSc Data ScienceYear:2ndSemester:3rdExamination:End Semester ExaminationExamination year:December - 2021

Course Name: Operation Research

 Course Code:
 DS206
 Course

 Date:
 08/12/2021

 Time:
 08:30 am to 10:30 am

Total Marks:40Total Pages:2

'nstructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted.

Q. No.	Details Attempt ANY TWO of the following:								CO's	BTL
Q.1									CO2, CO3, CO4	1,2,3,4
[a]	Obtain all basic solution of the following system of linear equations. Also identify basic solutions are feasible/non feasible. $x_1 + 2x_2 + x_3 = 4$, $2x_1 + x_2 + 5x_3 = 5$.							6		
[b]	Using graphical method find the minimum value of $Z = -x_1 + 2x_2$, subject to $-x_1 + 3x_2 \le 10$, $x_1 + x_2 \le 6$, $x_1 - x_2 \le 2$ & $x_1, x_2 \ge 0$.							6		
[c]	Four different jobs can be done on four different machines. Using Hungarian method find how should the jobs be assigned to the various machines so that the total cost is minimized?							6		
	Machines									
			<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₃	<i>M</i> ₄				Π.
		J ₁	2	10	9	7				к;
	1 1		15	4	14	8	-	2		
	Jobs	J_2	15	1		0				
	Jobs	J_2 J_3	13	14	16	11	_			
	Jobs						_			
Q.3		J ₃ J ₄	13	14	16	11		8	CO2	1,2,3,4
Q.3		J ₃ J ₄	13 4 o solve the	14	16 13 problem:	11		8	CO2	1,2,3,4
Q.3	Use simple	J_3 J_4 ex method t	13 4 o solve the Max Z	14 15 following $T = 2x_1 + 1$	16 13 problem: $5x_2$,	11		8	CO2	1,2,3,4
Q.3 Q.4	Use simple Subject to :	J_3 J_4 ex method t $x_1 + 4x_2 \le 1$	13 4 o solve the Max Z	14 15 following $x = 2x_1 + -x_2 \le 21,$	16 13 problem: $5x_2,$ $x_1 + x_2 \le$	9	≥ 0.	8	CO2 CO2	1,2,3,4

	Subject to $2x_1 + 3z_2$		3 <i>x</i> ₁ +	$2x_2 \leq$	24, x ₁	$+x_2 \ge 3$	& <i>x</i> ₁ , <i>x</i> ₂	≥ 0.			5
Q.5		ANY TWO				2 2 2		5		CO1, CO3, CO4	1,2,3,4
[a]	Use vogel's approximation method to find the initial basic feasible solution to the following transportation problem:								5		
				I	Distribu	tion cente	rs				
	5	· · · ·	1	D ₁	<i>D</i> ₂	<i>D</i> ₃	<i>D</i> ₄				2
		<i>P</i> ₁	2		3	11	7	6			
	Plants	<i>P</i> ₂	1		0	6	1	1			
		<i>P</i> ₃	5		3	15	9	10			
			7	:	5	3	2 ·				C
[b]	Determine an initial basic feasible solution to the following transportation problem using north-west corner rule:								5		
				<i>D</i> ₁	<i>D</i> ₂	<i>D</i> ₃	<i>D</i> ₄	Supply			
		<i>F</i> ₁		14	25	45	5	6			
	Factory	<i>F</i> ₂		65	25	35	55	8			
		F ₃		35	3	65	15	16			
	ć	Requirer	nent	4	7	6	13				
		rious appli									

************End of Question Paper**********

2