

NAVRACHANA UNIVERSITY

a UGC recognized UniversitySchool:School of Engineering & TechnologyProgram/s:BSc Data ScienceYear:3ndExamination:End Semester:Sth5thExamination year:December - 2021

Course Code:	DS305	Course Name:	Numerical Methods & Simulation	
Date:	08/12/2021		Total Marks:	40
Time:	11:30 am to 0	1:30 pm	Total Pages:	2

Instructions:

- → Write each answer on a new page.
- → Use of a calculator is permitted.

→ Write both sections in same answer book.

- [Section-I		-	Marks	COs*	BTL#
	Q.1	Attempt AN	Y THREE of the	e following:			$[3 \times 7 = 21]$		
	[1]	Evaluate: (a)	$\Delta^2 x^3$	(b) $\Delta^3(ae^x)$				CO1, CO2, CO3	BT1, BT2, BT5
	[2]		imate root of x Newton-Raphson					CO1,	BT1,
		-		in 5 metrica. e.		101		CO2,	BT2,
2		$x_{n+1} = x_n -$	$-\frac{f(x_n)}{f'(x_n)}.$					C03	BT5
ŀ	[3]	Solve the fo	llowing system	of equations b	y using Gau	iss elimination			BT1,
		method:					8	CO1,	BT2,
		x + y + 2z	= 4, 3x + y - 3	3z = -4, 2	2x - 3y - 5z	r = -5		CO2,	BT4,
			, <i>on</i> , <i>y</i> ,	, -				CO3	BT5
-	[4]		e of y when x=3 polation formula		llowing data	using Gauss's			
			^					CO1,	BT1,
а с		$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!}\Delta^3 y_{-1} + \cdots$						CO2,	ΒТ2,
		x 2.0	2.5	3.0	3.5	4.0		CO3	BT5
		Y 246.2	2 409.3	537.2	636.3	715.9		27	
ŀ	Q.2	Attempt AN	Y ONE of the fo	llowing:			$[1 \times 9 = 9]$		
ŀ	[5]	Using the Ru	ingh-Kutta meth	od estimate y((3) for $\frac{dy}{dx} = \frac{dy}{dx}$	$\frac{x+y}{x}$, $y(2) = 1$.		CO1,	BT1,
		Use	2		ux	л		CO2,	BT2,
		h = 0.5.						CO3	BT5

[6]	Using Taylor's series method, find $y(0.1)$ correct to four decimal places			
	if $y(x)$ satisfies $\frac{dy}{dx} = x - y^2$, $y(0) = 1$.		C01,	BT1,
	Taylor's series is given by: $y(x + h) = y(x) + hy'(x) + \frac{h^2}{2!}y''(x) + y'(x) + \frac{h^2}{2!}y''(x) + \frac{h^2}{2!}y'''(x) + \frac{h^2}{2!}y'''(x) + \frac{h^2}{2!}y'''(x) + \frac{h^2}{2!}y''''(x) + \frac{h^2}{2!}y''''(x) + \frac{h^2}{2!}y''''''''''''''''''''''''''''''''''''$		CO2,	BT2,
	$\frac{1}{2!}$ $\frac{1}{2!}$ $\frac{1}{2!}$ $\frac{1}{2!}$ $\frac{1}{2!}$ $\frac{1}{2!}$ $\frac{1}{2!}$	14	C03	BT5
÷	Section-II			
Q3	Answer in short:	[4]	CO4	BT1,
(a)	(i) Square root of number can be found using method. (Newton Raphson / Gauss-Sidel)			BT2,
	(ii) Bisection method solves transcendental equations. (True / False)			
	(iii) Lagrange interpolation can be used for the data in unequal place. (True / False)			
	(iv) Which operator can solve system of linear equations in Octave?			
Q3	Attempt Any TWO:	[2x3 = 6]	CO1, CO2, CO3, CO4	BT1,
(b)	(i) Write piece of Octave code to find solution of system of linear equations by Gauss-Elimination method. The system is:	~		BT2, B
	2x + 3y + z = 9, x + 2y + 3z = 6, 3x + y + 2z = 8.			
	(ii) Consider an initial value problem: $\frac{dy}{dx} = y$, y(0) = 1, step length h =			
	0.1. Write piece of Octave code to find solution y(x) using Euler's method.	a.		
	(iii) Write piece of Octave code to apply Newton-Raphson method to find approximate root of the equation $f(x) = 2 \sin x - x = 0$ with initial root $x_0 = 2$.			

************End of Question Paper**********