

School: School of Engineering and Technology

Program/s: BSc (Data Science)
Year: 3rd Semester: V

Examination: End Semester Examination

Examination year: December - 2021

Course Code: DS303 Course Name: Soft Computing

Date: 6/12/2021

Time: 11:30 am to 1:30 pm

Total Marks: 40

Total Pages: 2

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted.

→ Draw all relevant waveforms in answer sheet only.

→ *COs=Course Outcome mapping. #BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Marks	COs*	BTL#
Q.1(a)	Answer in short: (i) Every crisp set can be regarded as a fuzzy set. (True / False) (ii) Universal set is a set. (fuzzy / crisp)	5	J	
	(ii) Give one real example of conditional and unqualified fuzzy proposition. Justify.		CO1	BT1, BT2
	(iv) Modus Ponens is a (tautology / contradiction) (v) Fuzzy quantifier "almost all" is a fuzzy set defined on [0,1]. (True / False)		, **	
Q.1(b)	Attempt Any Three:	15		
	(i) Define the terms: Fuzzy sets, Height of fuzzy sets, Normal fuzzy sets (ii) Consider two fuzzy subsets of the set $X, X = \{a, b, c, d, e\}$ referred to as A			
	and B , $A = \{1/a, 0.3/b, 0.2/c 0.8/d, 0/e\} \text{ and } B = \{0.6/a, 0.9/b, 0.1/c, 0.3/d, 0.2/e\}.$ Find height of			
	fuzzy sets A and B. Check whether A and B are normal fuzzy sets or not.			
	(iii) Explain in detail the different kinds of Fuzzy quantifiers given in Fuzzy logic.		CO1, CO2	BT1, BT2, BT5
	(iv) Find fuzzy union, intersection and complement of following two fuzzy sets. Draw membership function of each concept.			
	A(x) = $(x + 1) / 3$, for $-1 < x < 2$ = $(5 - x) / 3$, for $2 \le x < 5$ = 0, for $x \le -1$ and $x \ge 5$ and		g.	
	B(x) = (x-1)/2, for $1 < x < 3$			
	= $(5-x)/2$, for $3 \le x < 5$ = 0, for $x \le 1$ and $x \ge 5$.			

Q.2(a)	Answer in short:	5		
	(i) Genetic Algorithm is a non-traditional optimization method. (True / False) (ii) In genetic algorithm, data are given in terms of (bit strings / real numbers) (iii) Name one of the method for reproduction operation. (iv) The new mating pool is generated during (reproduction / crossover)		CO2	BT1, BT2
	(v) Which built-in function in Octave can solve the problem using genetic algorithm?	15		ingle va
Q.2(b)	Attempt Any Three:	15		
	(i) Suppose there are five people in a women's figure skating competition. They are Anny, Bonnie, Cathy, Diana, and Eve. Assume that their relative goodness of performance is given by a fuzzy set		~	
	E = 1/Army + .9/Bonnie + .5/Cathy + .9/Diana + .1/Eve.		1	
	Using the fuzzy quantifier "About Half", determine the truth value of the fuzzy proposition, "About half of them have good performance".	5		=
	(ii) Name and explain three main operators of the genetic algorithm.		CO3,	BT2, BT3, BT5
	(iii) Explain the three forms of Tautologies which are used for making deductive inferences in Fuzzy logic. Consider the fuzzy proposition $p : If X \text{ is } A$, then Y is B as a rule,			БІЗ
	$A = 0.6 / x_1 + 1 / x_2 + 0.9 / x_3$, $B = 0.6 / y_1 + 1 / y_2$. Given a fact "X is A'", where $A' = 0.5 / x_1 + 0.9 / x_2 + 1 / x_3$. Using the generalized modus ponens derive a conclusion in the form: "Y is B'". Use fuzzy implication $J(a,b) = \min(1, a - b + 1)$.	1		
* .	(iv) Consider an air-conditioning fuzzy control system. Using the various steps involved in the fuzzy control system, generate reasonable fuzzy inference rules and find speed of motor if temperature is 63 degree.			

*********End of Question Paper******