School: School of Engineering and Technology Program/s: Electrical & Electronics Engineering Year: 2nd Semester: 3rd **Examination:** End Semester Examination Examination year: December - 2021 Course Code: EE235 Course Name: Network Theory **Date:** 09/12/2021 Time: 8:30 am to 10:30 pm Total Marks: 40 Total Pages: 1 ## Instructions: → Write each answer on a new page. → Use of a calculator is permitted/not permitted. → *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping | Que. A
Q.1 | Attempt any Five. Prove that for T-type constant band pass filters resonant frequency is $f0=\sqrt{f1f2}$. | Marks
8 | COs* | BTL# BT1, BT2, BT3, | |---------------|---|------------|---------------------|-----------------------------| | Q.2 | Derive design equation for L-type attenuator when L-shape faces the output terminals. Also determine parameters of the same network when image impedance is 500Ω & attenuation is 10db. | 8 | CO9,
CO10 | BT1
,BT2,
BT4,
BT5 | | Q.3 | Derive design equation for symmetrical lattice network in terms of characteristics resistance & attenuation constant (in neper). Also derive relation between neper and db for attenuation. | 8 | CO10,
CO11 | BT1
,BT2,
BT3,
BT4 | | Q.4 | Design a low-pass constant-k type T-section filter with f_c =3KHz and nominal characteristic impedance 500Ω . Also determine the frequency at which the filter offers attenuation of 20dbs. Determine β for f=2 KHz and f= 10 KHz. | 8 | CO7,
CO8 | BT1
,BT2,
BT3,
BT4 | | Q.5 | For the network shown in <u>figure 1.</u> below compute V_2/V_1 . V_1 V_2 V_2 V_2 V_3 V_4 V_2 V_3 V_4 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_8 V_8 V_9 V | 8 | CO1,
CO2,
CO3 | BT1
,BT2,
BT4,
BT5 | | Q.6 | Define cut-set and tie-set matrix for a graph. Draw Cut-set Matrix and Tie-set matrix of graph as shown in <u>Figure 2</u> .(consider branches 1,2,3,6 as tree branches). | 8 | | | | | 1 2 5 Fig.2 | | CO4,
CO5, | BT1
,BT2,
BT4,
BT5 | | Q. 7 | Derive the ABCD parameters in terms of Y and h-parameters. | 8 | CO1,
CO2,
CO3 | BT1
,BT2,
BT4,
BT5 | ***********End of Question Paper*******