

School: School of Engineering and Technology
Program/s: Electrical & Electronics Engineering

Year: 2nd Semester: 3rd

Examination: End Semester Examination

Examination year: December - 2021

Course Code: EE235

Course Name: Network Theory

Date: 09/12/2021

Time: 8:30 am to 10:30 pm

Total Marks: 40

Total Pages: 1

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

→ *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Que. A Q.1	Attempt any Five. Prove that for T-type constant band pass filters resonant frequency is $f0=\sqrt{f1f2}$.	Marks 8	COs*	BTL# BT1, BT2, BT3,
Q.2	Derive design equation for L-type attenuator when L-shape faces the output terminals. Also determine parameters of the same network when image impedance is 500Ω & attenuation is 10db.	8	CO9, CO10	BT1 ,BT2, BT4, BT5
Q.3	Derive design equation for symmetrical lattice network in terms of characteristics resistance & attenuation constant (in neper). Also derive relation between neper and db for attenuation.	8	CO10, CO11	BT1 ,BT2, BT3, BT4
Q.4	Design a low-pass constant-k type T-section filter with f_c =3KHz and nominal characteristic impedance 500Ω . Also determine the frequency at which the filter offers attenuation of 20dbs. Determine β for f=2 KHz and f= 10 KHz.	8	CO7, CO8	BT1 ,BT2, BT3, BT4
Q.5	For the network shown in <u>figure 1.</u> below compute V_2/V_1 . V_1 V_2 V_2 V_2 V_3 V_4 V_2 V_3 V_4 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_8 V_8 V_9 V	8	CO1, CO2, CO3	BT1 ,BT2, BT4, BT5
Q.6	Define cut-set and tie-set matrix for a graph. Draw Cut-set Matrix and Tie-set matrix of graph as shown in <u>Figure 2</u> .(consider branches 1,2,3,6 as tree branches).	8		
	1 2 5 Fig.2		CO4, CO5,	BT1 ,BT2, BT4, BT5
Q. 7	Derive the ABCD parameters in terms of Y and h-parameters.	8	CO1, CO2, CO3	BT1 ,BT2, BT4, BT5

***********End of Question Paper*******