

AVRACHANA UNIVERSITY a UGC recognized University

School:School of Engineering and TechnologyProgram/s:B.Tech-Electrical and Electronics EngineeringYear:2ndExamination:End Semester:Examination year:December - 2021

Course Code:	EE234	Course Name:	Signals and Systems		
Date:	06/12/2021			Total Marks :	40
Time:	08:30 am to 10	:30 am		Total Pages :	02

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

→ * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

	Q. No.	Details	Marks	COs*	BTL#	
	Q.1	A stable system has input $x(t)$ and output $y(t)$. Use Laplace transformation to	6	CO4	BT1,	
		determine transfer function and impulse response h(t) of the system.			BT2	
		$y(t) = -2e^{-t}u(t) + 3e^{-3t}u(t)$ x(t) = $e^{-2t}u(t)$				
	Q.2	Draw output voltage waveform of full wave bridge rectifier. Obtain values of all	6	C02	BT1,	
		Fourier coefficients. Find Fourier series for the full wave rectified sine wave.			ВТ2, ВТ4	
		OR			DII	
		Draw output voltage waveform of half wave rectifier. Obtain values of all Fourier				
		coefficients. Find Fourier series for the half wave rectified sine wave.				
	Q.3	Obtain Z-transform of the following,	6	C04	BT1,	
		(a) $x(n) = (0.5)^n \{u(n)-u(n-10)\}$			BT2	
		(b) $x(n)=na^nu(n)$				
		(c) $x(n)=(1/2)^n u(n)$				
Ļ	Q.4	Obtain the Z-transform of the following finite duration sequences: $x(n) = \{1, 2, 4, 5, 0, 7\}$.	2	CO4	BT1, BT2	

Q. No.	SECTION -II	Marks	COs*	BTL#
Q.1	Determine the response of the LTI system by graphical method whose input $x[n]$	5	C01	
	and impulse response h[n] are given by			BT2,
	$x[n] = \{2, 3, 0.5, 2\}$			BT4
	$h[n] = \{2, 1, 3, -1\}$			

4

Q.2	a) Test the Linearity of the following system	5	CO1,CO3	BT2, BT4
	$\mathbf{y}[\mathbf{n}] = \frac{1}{x[n-4]} + 5\mathbf{x}[\mathbf{n}]$			
	c) Determine R_{xx} for the given sequence			
	$\mathbf{x[n]} = \{ 6, -4, 3, 0, 2, 1 \}$			
Q.3	Find the 8 point DFT for the following sequence using Butterfly Structure $x[n] = (3,4,1,2,3,1,2,3)$	6	CO3	ВТ2, ВТ4
Q.4	a) Determine the even and odd parts of the signal $x[n] = \{2, -2, 6, -2\}$	4	C01	BT2, BT4
	b) Test the Causility of the following system			

y[n] = x[n] + 2x[n+3]

*******End of Question Paper********