

NAVRACHANA UNIVERSITY

School: a UGC recognized UniversitySchool:School of Engineering and TechnologyProgram/s:B.Tech EEEYear:2ndSemester:3rdExamination:End Semester ExaminationExamination year:December-2021

Course Code: MA224 Date: 01/12/2021

Course Name: Mathematics III

Time: 08:30 am to 10:30 am

Total Marks: 40 Total Pages: 1

Instructions:

 \rightarrow Write each answer on a new page.

➔ Use of a calculator is permitted/not permitted.

Q. No.		Details	Marks	COs*	DTL #
Q.1	i)		10	LUS	BTL#
C		For the Binomial distribution, the probability for the random variable X for X=r, i.e, P(X=r)=			8
	ii)	If a pair of coins is tossed then the expected value of the number of heads is			
	iii) ·	Two marbles are drawn successively from a box containing 3 black		C01	BT1,
	iv) /	and 4 white marbles. Find the probability that both the marbles are plack if the first marble is not replaced before the second drawing. Average number of accidents on any day on a national highway is 1.8. Determine the probability that the accidents are at most one given that $e^{-1.8} = 0.16529$		CO2	BT2
Q.2	i) 4	Area of normal curve between $\mu - 3\sigma$ and $\mu + 3\sigma$ is (a) 0.95 (b) 0.997 (c) 1 (d) none of these.	10	- 	
	ii) / I	f the probability density function is given by $f(x) = \frac{1}{\sigma}e^{-\frac{x}{\sigma}}$,			-
	С Е iii) Т м	$d \leq x < \infty$, then the distribution is (a) Poisson (b)Gamma (c) xponential (d)Beta distribution. he average height of soldiers of a country is given as 68.22 inches with variance 10.8 square inches. How many soldiers out of 1000		CO3 CO4	BT1, BT2
Ĵ	v tł iv) If	would you expect to be over 72 inches tall? Given that area under the normal curve between z=0 and z=1.15 is 0.3746. the probability density function is given as $(x) = \begin{cases} kx^3 & 0 \le x \le 3\\ 0 & otherwise \end{cases}$ find the value of "k" and the probability etween $x = \frac{1}{2}$ and $x = \frac{3}{2}$		CO5	BT4
0.2	be	etween $x = \frac{1}{2}$ and $x = \frac{3}{2}$			
Q.3	I) Th	The real root of the equation $x log_{10}x - 1.2 = 0$ lies between and	10		-
	ii) Fc 23 iii) Th	brown the forward difference table for the data $u_0 = 225$, $u_1 = 38$, $u_2 = 320$, $u_3 = 340$. The following table gives the value for $tanx$ for $0.10 \le x \le 0.30$. The the value of tan (0.26).		CO6 CO7	BT1 BT3, BT4

		x	0.10	0.15	0.20	0.25	0.30		Τ	[
		tanx	0.1003	0.1511	0.2027	0.2553	0.3093			
	iv)	Given $u_{20}^{}$ Find $u_{28}^{}$ b	= 24.37, y Newton's	$u_{22} = 49.2$ divided dif	8, $u_{29} = 1$	62.8 <i>and ı</i> mula	$u_{32} = 240.5$.			
Q.4	i)	Write the formula for Simpson's one third rule for the function $f(x,y)$ defined at the points (x_0, y_0) , (x_1, y_1) , (x_n, y_n) .						10		
	ii)	Evaluate $\int_0^6 3x^2 dx$ by dividing the interval [0,6] into six equal parts by applying Weddle's rule. Apply modified Euler's method to solve $\frac{dy}{dx} = x + 3y$ subject to y(0) = 1 and find the approximate value of $y(0.2)$.							CO8	BT1 BT2,
	iii)								CO9	ВТ2, ВТ3, ВТ4
	iv)	Find $y(0.2)$ Kutta's me) for the	equation $\frac{d_2}{d_2}$	$\frac{y}{x} = -xy$, y	v(0) = 1, u	using Runge			

***********End of Question Paper**********