

School: School of Engineering and Technology

Program/s: Electrical Engineering

Year: 3rd Semester: 5th

Examination: End Semester Examination

Examination year: December - 2021

Course Code: EE 304

Course Name: Control System

Date: 08/12/2021

Time: 11:30 am to 1:30 pm

Total Marks: 40
Total Pages:

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted.

→ *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Attempt Any Four:	Marks	COs*	BTL#
Q.1	Sketch the root locus plot of unity feedback system with an open loop transfer function of $G(s) = k/s(s+3)(s+5)$. Find the range of values of k for which the system has damped oscillatory response. What is the greatest value of k for which the system has damped oscillatory response. What is the greatest value of k which can be used before continuous oscillations occur. Also determine the frequency of continuous oscillations. Also determine the value of k so that the dominant pair of complex poles of the system has a damping ratio of 0.7.	10	CO1,CO2	3,4
Q.2	Draw polar plot of $G(s)H(s) = 150/s(s+3)(s+9)$	10	CO3	1,3,4
Q.3	For the system having the open loop transfer function $G(s)H(s) = 10/s(s+1)(s+10)$ Determine the stability of the system by plotting the Bode plot of the system.	10	CO4	4,5,6
Q.4	Draw the Bode plot of a system with open loop transfer function: G(s)H(s) = 10 (s+3)/s(s+1)(s+2).	10	CO4	4,5,6
0.5		10		
Q.5	The open loop transfer function of a control system is given by $G(s) = k/s(s+2)(s^2+6s+25)$ Sketch the complete root locus as k varies from 0 to infinity.	10	CO3	3,4,5,6

***********End of Question Paper*******