

Enrollment No.: _____

School:School of Engineering and TechnologyProgram:B. Tech. Electrical EngineeringYear:4thExamination:End Semester ExaminationExamination year:December - 2021

Course Name: Electrical Machine Design - I

 Course Code:
 EE 420
 Course

 Date:
 01/12/2021

 Time:
 02:30 PM TO 04:30 PM

Total Marks: 40 Total Pages: 02

Instructions:

- → Write each answer on a new page.
- → Use of a calculator is permitted.
- → Figures to the right indicate full marks
- → Assume the data wherever necessary by giving proper justification.
- → Write answers as per the requirement and point wise only.

Q. 1	(a)	As the number of core stampings increases, diameter of	[01]	CO2	BTL
	s)	the core in the transformer			4,6
-		(a) increases (b) decreases			
		(c) remains same (d) can't say anything			
	(b)	Which statement/s is/are right for the transformer, if	[01]	CO2	BTL
	1	frequency increases,			3, 4
/		I. Hysteresis losses decreases with constant			
		voltage			
ý.		II. Rating of the transformer increases			
		III. Copper losses increases			
		IV. Total iron losses decreases			
		(a) only I (b) I and II (c) I, II and III (d) I, II, III and IV			
	(c)	What should be the yoke area of the transformer if its core	[01]	CO2	BTL
		area is 0.0357 m ² ?			3,6
		(a) 0.0403 m ² (b) 0.0464 m ² (c) 0.0431 m ² (d) 0.0449 m ²			
Q. 2	List	out insulating materials used in rotating AC and DC	[02]	CO1	BTL
æ	mac	hines and in transformers.			2

1/2

Q. 3	(a)	How current transformer behaves under short circuit	[03]	CO3	BTL
		conditions? – Explain.			2
	(b)	Explain the construction of current transformer in detail.	[04]	CO3	BTL
					1,6
Q. 4	Explain the factors affecting to select number of stator slots in		[07]	CO4	BTL
	three phase induction motors in detail.				4,6
Q.5	Explain the criteria to select specific magnetic loadings and			CO4	BTL
	spec	ific electric loadings for the design of single phase and	8		4,6
	three phase induction motors in detail.				
		OR			
Q. 5	Expl	ain the design of rotor turns, rotor conductors, rotor teeth	[07]	CO4	BTL
	and	rotor core for slip ring induction motors along with	6		3,6
5	nece	ssary derivations.			
Q. 6	Why	end-rings are required in squirrel cage induction motors?	[07]	CO4	BTL
	Deriv	ve the equations of end-ring currents and area of end-rings			3, 4, 6
	for so	quirrel cage induction motors.			
Q. 7	Find	the main dimensions and number of stator turns per phase	[07]	CO 4	BTL
	of a 3.7 kW, 400 V, 3 phase, 4 pole, 50 Hz squirrel cage				4
	induction motor to be started by star-delta starter. Assume				
	average flux density in the gap is 0.45 Wb/m ² , ampere			9 - S 9	
		actors per meter is 23000, efficiency is 85 % and power			
		rs is 0.84. This machine is sold at a competitive price and		<i>b</i> .	
	there	fore choose the main dimensions to give a cheap design.			
		OR			
Q. 7		osses in a 11 kW, 3 phase, 4 kV, 50 Hz, 1000 rpm	[07]	CO4	BTL
		tion motor are:			4
		er losses = 950 W , Iron losses = 500 W ,			
		on and Windage losses = 110 W.			
1		the output, losses and efficiency of a similar motor			
		ned with each linear dimension 2 times the linear			
	dimen	sions of the given motor.			