School of Engineering and Technology School: M.Tech Structural Engineering Program/s: Year: 2nd Semester: 3rd **Examination:** End Semester Examination **Examination year:** December - 2021 Course Name: Advance Foundation Engineering -II Course Code: SE-114 Total Marks: 40 Date: 03/12/2021 Total Pages: 04 **Time:** 11:30 am to 01:30 pm #### Instructions: → Write each answer on a new page. → Use of a calculator is permitted → Copies of Indian Standard Codes (IS-code): IS 6403 Breaking capacity of shallow foundations, IS 8009 (Part 1) Settlement of foundations and IS 2911-Part 1 Design and Construction of Pile Foundations IS 14458 Part 2 Retaining wall and IRC 45 1972 Well foundations are allowed. → Formulations and Graphs from research paper required as a reference to solve numericals are attached with the paper. → Specify clearly the assumptions made and draw figures wherever applicable. | Q. No. | Details | Marks | CO | BT | |--------|--|-------|--------------------------|---------| | Q.1 | Short Questions (Any 10) | 10 | CO1 | 1,2,3,4 | | | Short piles unrestrained at top fail by rotation as a rigid body about a centre of rotation. (True/ False) shape of well foundation is considered to be highly effective and economical. Define negative skin friction in pile foundations. Depth of well foundation should not be less than 1.55 times maximum scour depth. (True/ False) Passive pressure acting on the toe of the retaining wall disturbs the stability of retaining wall against sliding. (True / False) Vertical pressure remains constant in static method of pile load carrying capacity when the depth of pile > critical dept. (True / False) State the various alternatives to improve FOS during sliding in retaining wall. In order to reduce the time of consolidation and improve strength of soft clayey soils ground improvement technique is adopted. Specify the frequency ratio range in machine foundation to ensure stability of foundation w.r.t to amplitude criteria. type of geosynthetics facilitate interlocking of soil/aggregate particles within their opening. Is code method to obtain lateral load carrying capacity of piles is | | CO2
CO3
CO4
CO5 | | | | applicable only for short piles. (True/ False) | 10 | 604 | 100/ | | Q.2 | A 300 mm circular pile is driven 5 m below ground level in pre-loaded clay. The load to be applied is 1 m above the ground, c_u = 100kPa, α = 0.3. a. Determine the allowable vertical pile load carrying capacity using static method (FOS =2.5). | 10 | CO2 | 1,2,3,4 | | active earth pressure theory. Determine following: (a) Factor of safety against overturning (b) Factor of safety against sliding (c) Check for bearing capacity failure 7 = 18.5 kW/m 4 = 32* 4 = 30 2.33 m 7 = 18.5 kW/m 4 = 32* 4 = 30 2.33 m 7 = 18.5 kW/m 4 = 32* 4 = 30 2.34 A well foundation pierfor bridge over river, with 5.5 m x 10.5 m in plan and the depth of well below scour level D = 18 m is subjected to the following loads in a granular deposit: W = 16,000 kW, H = 3500 kN, moment about base level = 40,000 kN The value of φ of the granular soil = 30°, wall friction δ = 2/3φ, allowable bearing 65 U/m²; and k ₀ /k ₀ = m = 1. Unit weight ofgranular soil is 20 kN/m². Check the lateral stability of the well under the above forces according to IRC 45 (1972) recommendations. OR Q.4 A vertical compressor having two cylinder possess weight of 20 t is driven by an electric motor weighing 5 t working at 1000 rpm. The length and breadth of the base of the foundation block are tx = 10.5m and ty = 6.5 m, and it weighs 100.4 tons. The foundation is resting on 8m thick OC day having Cc = 0.3; Cr = 0.04 and e ₀ = 0.65. Check for the settlement at the middle of the clay layer. The data of forces generated are as follows: (a) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton (b) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton (c) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton (b) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton edge; 2 = 1.2 m from base. | | | | | | | |---|-----|--|----|-----|---------|---| | active earth pressure theory. Determine following: (a) Factor of safety against overturning (b) Factor of safety against sliding (c) Check for bearing capacity failure Q.4 A well foundation pierfor bridge over river, with 5.5 m x 10.5 m in plan and the depth of well below scour level D = 18 m is subjected to the following loads in a granular deposit: W = 16,000 kN; H = 3500 kN, moment about base level = 40,000 kN The value of φ of the granular soil = 30°, wall friction δ = 2/3φ, allowable bearing 65 t/m²; and k _λ /k _ν = m = 1. Unit weight ofgranular soil is 20 kN/m². Check the lateral stability of the well under the above forces according to IRC 45 (1972) recommendations. Q.4 A vertical compressor having two cylinder possess weight of 20 t is driven by an electric motor weighing 5 t working at 1000 rpm. The length and breadth of the base of the foundation block are Lx = 10.5m and Ly = 6.5 m, and it weighs 100.4 tons. The foundation is resting on 8m thick OC clay having Cc = 0.3; Cr =0.04 and e ₀ = 0.65. Check for the settlement at the middle of the clay layer. The data of forces generated are as follows: (a) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton (b) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton edge; z = 1.2 m from base. | | on a pile using IS 2911methods and Broms Method with $M_U = 100$ | | | | | | Q.4 A well foundation pierfor bridge over river, with 5.5 m x 10.5 m in plan and the depth of well below scour level $D = 18$ m is subjected to the following loads in a granular deposit: $W = 16,000 \text{ kN}$; $H = 3500 \text{ kN}$, moment about base level = 40,000 kN The value of ϕ of the granular soil = 30°, wall friction $\delta = 2/3\phi$, allowable bearing 65 f/m²; and $k_0 k_0 = m = 1$. Unit weight ofgranular soil is 20 kN/m³. Check the lateral stability of the well under the above forces according to IRC 45 (1972) recommendations. OR Q.4 A vertical compressor having two cylinder possess weight of 20 t is driven by an electric motor weighing 5 t working at 1000 rpm. The length and breadth of the base of the foundation block are Lx = 10.5m and Ly = 6.5 m, and it weighs 100.4 tons. The foundation is resting on 8m thick OC clay having Cc = 0.3; Cr = 0.04 and e_0 = 0.65. Check for the settlement at the middle of the clay layer. The data of forces generated are as follows: (a) Unbalanced rocking moment = 3t and $\Theta = 60^\circ$ (c) Centre of gravity of system; $x = 5.25$ m from edge; $y = 3.25$ from edge; $z = 1.2$ m from base. | Q.3 | active earth pressure theory. Determine following: (a) Factor of safety against overturning (b) Factor of safety against sliding | 10 | CO3 | 1,2,3,4 | | | the depth of well below scour level <i>D</i> = 18 m is subjected to the following loads in a granular deposit: <i>W</i> = 16,000 kN; <i>H</i> = 3500 kN, moment about base level = 40,000 kN The value of φ of the granular soil = 30°, wall friction δ = 2/3φ, allowable bearing 65 t/m²; and k _h /k _v = m = 1. Unit weight ofgranular soil is 20 kN/m³. Check the lateral stability of the well under the above forces according to IRC 45 (1972) recommendations. OR OR CO5 1,2,3 Q.4 A vertical compressor having two cylinder possess weight of 20 t is driven by an electric motor weighing 5 t working at 1000 rpm. The length and breadth of the base of the foundation block are Lx = 10.5m and Ly = 6.5 m, and it weighs 100.4 tons. The foundation is resting on 8m thick OC clay having Cc = 0.3; Cr = 0.04 and e ₀ = 0.65. Check for the settlement at the middle of the clay layer. The data of forces generated are as follows: (a) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton (b) Unbalanced rocking moment = 3 t and Θ = 60° (c) Centre of gravity of system; x = 5.25 m from edge; y = 3.25 from edge; z = 1.2 m from base. | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | Q.4 A vertical compressor having two cylinder possess weight of 20 t is driven by an electric motor weighing 5 t working at 1000 rpm. The length and breadth of the base of the foundation block are Lx = 10.5m and Ly = 6.5 m, and it weighs 100.4 tons. The foundation is resting on 8m thick OC clay having Cc = 0.3; Cr =0.04 and e₀ = 0.65. Check for the settlement at the middle of the clay layer. The data of forces generated are as follows: (a) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton (b) Unbalanced rocking moment = 3 t and Θ = 60° (c) Centre of gravity of system; x = 5.25 m from edge; y = 3.25 from edge; z = 1.2 m from base. | Q.4 | the depth of well below scour level $D=18$ m is subjected to the following loads in a granular deposit: $W=16,000$ kN; $H=3500$ kN, moment about base level = 40,000 kN The value of ϕ of the granular soil = 30°, wall friction $\delta=2/3\phi$, allowable bearing 65 t/m²; and $k_h/k_v=m=1$. Unit weight ofgranular soil is 20 kN/m³. Check the lateral stability of the well under the above forces | 10 | CO4 | 1,2,3,4 | | | Q.4 A vertical compressor having two cylinder possess weight of 20 t is driven by an electric motor weighing 5 t working at 1000 rpm. The length and breadth of the base of the foundation block are Lx = 10.5m and Ly = 6.5 m, and it weighs 100.4 tons. The foundation is resting on 8m thick OC clay having Cc = 0.3; Cr =0.04 and e₀ = 0.65. Check for the settlement at the middle of the clay layer. The data of forces generated are as follows: (a) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton (b) Unbalanced rocking moment = 3 t and Θ = 60° (c) Centre of gravity of system; x = 5.25 m from edge; y = 3.25 from edge; z = 1.2 m from base. | | OR | | CO5 | 1,2,3,4 | - | | (a) Unbalanced forces: vertical = 5.00 tons; horizontal = 0 ton (b) Unbalanced rocking moment = 3 t and ⊕ = 60° (c) Centre of gravity of system; x = 5.25 m from edge; y = 3.25 from edge; z = 1.2 m from base. | Q.4 | an electric motor weighing 5 t working at 1000 rpm. The length and breadth of the base of the foundation block are Lx = 10.5m and Ly = 6.5 m, and it weighs 100.4 tons. The foundation is resting on 8m thick OC clay having Cc = 0.3; Cr =0.04 and e_0 = 0.65. Check for the settlement at the middle of the clay layer. | 10 | | | | | (b) Unbalanced rocking moment = 3 t and ⊕ = 60° (c) Centre of gravity of system; x = 5.25 m from edge; y = 3.25 from edge; z = 1.2 m from base. | | The data of forces generated are as follows: | | | | | | (e) Determine the natural frequencies in vertical, sliding, rocking (uncoupled modes) and also in the coupled frequencies of vertical, sliding and rocking mode if $C_u = 6.0 \times 10^3 \text{ t/m}^3$ and safe bearing capacity 400 kN/m ² . | | (b) Unbalanced rocking moment = 3 t and ⊕ = 60° (c) Centre of gravity of system; x = 5.25 m from edge; y = 3.25 from edge; z = 1.2 m from base. (d) M_{m0} = Mass moment of inertia of system = 40.8 t ms² (e) Determine the natural frequencies in vertical, sliding, rocking (uncoupled modes) and also in the coupled frequencies of vertical, sliding and rocking mode if C_u = 6.0 x 10³ t/m³ and safe bearing | | | | | # Formulations and Graphs $$K_a = \cos i \times \frac{\cos i - \sqrt{\cos^2 i - \cos^2 \phi'}}{\cos i + \sqrt{\cos^2 i - \cos^2 \phi'}}$$ $$K_p = \cos i \frac{\cos i + \sqrt{\cos^2 i - \cos^2 \varphi'}}{\cos i - \sqrt{\cos^2 i - \cos^2 \varphi'}}$$ $$K_a = \frac{\sin^2(\beta + \phi')}{\sin^2\beta \sin(\beta - \delta) \left[1 + \sqrt{\frac{\sin(\phi' + \delta)\sin(\phi' - i)}{\sin(\beta - \delta)\sin(\beta + i)}}\right]^2}$$ $$K_{p} = \frac{\sin^{2}(\beta - \phi')}{\sin^{2}\beta \cdot \sin(\beta + \delta) \left[1 - \sqrt[4]{\frac{\sin(\phi' + \delta)\sin(\phi' + i)}{\sin(\beta + \delta)\sin(\beta + i)}}\right]^{2}}$$ $$A_z = \frac{P_0}{4 m \pi^2 (f_{nz}^2 - f^2)}$$ $$\Delta s(i) = C_c \frac{II_i}{1 + e_{\gamma}(i)} \log \left(\frac{\overline{\sigma}_o + \Delta \sigma_i}{\overline{\sigma}_o} \right)$$ $$f_{nz}^2 = \frac{C_u A}{4\pi^2 m}$$ $$f_{nx}^2 = \frac{C_\tau A}{4\pi^2 m}$$ $$f_{n\phi}^2 = \frac{C_\phi I - Wz}{4\pi^2 M_{m0}}$$ $$f_{n\psi}^2 = \frac{C_\psi J_z}{M_{mz}}$$ $$rf_n^4 - (f_{nx}^2 + f_{n\phi}^2)f_n^2 + f_{nx}^2f_{n\phi}^2 = 0$$ # Brom's Chart #### Short Piles in Cohesive soil $$\beta = \left(\frac{KB}{4EI}\right)^{1/4}$$ K = modulus of subgrade reaction in MN/m³ #### Lateral Deflection in Cohesive soil ### Long Piles in Cohesive soil # Lateral deflection in Cohesionless soil # Short Piles in Cohesionless soil # Long Piles in Cohesionless soil $$\eta = \left[\frac{\eta_h}{EI}\right]^{1/5}$$ $$K_{P} = \frac{1 + \sin \phi}{1 - \sin \phi}$$ ***********End of Question Paper********