

NAVRACHANA UNIVERSITY a UGC recognized University

School: School of Engineering and Technology

Program/s:Electrical EngineeringYear:3rdSemester:Examination:End Semester Examination

Examination year: December - 2021

EE321	Course Name:	Elements of power system		
06/12/2021			Total Marks:	40
11:30 am to 01	:30 pm		Total Pages:	2
	06/12/2021		06/12/2021	06/12/2021 Total Marks:

.structions:

→ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

→ * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Que. A	Attempt any Four.	Marks	COs*	BTL [#]
Q.1	Define substation. Give broad classification of substation. Also give comparison between indoor & outdoor substation.	5	CO1, CO2	BT1, BT2, BT3,
Q.2	List down equipment of transformer sub-station. Describe function of each equipment along with its symbolical presentation.	5	CO1, CO2	BT1 ,BT2, BT4, BT5
Q.3	What is corona? What are the factors which affect corona? Also discuss the advantages and disadvantages of corona.	5	CO6, CO7	BT1 ,BT2, BT3, BT4
Q.4	Discuss the methods used to calculate value of earth capacitance & core capacitance in 3-core cable.	5	CO6, CO7	BT1 ,BT2, BT3, BT4
Q.5	Give the comparison for volume of conducting material required between D.C. 2-wire system with midpoint earth & 2-phase 2-wire A.C. system with one conductor earthed. Also list out assumption required for this comparision.	5	CO3, CO4, CO5	BT2 ,BT3, BT4, BT5

Que. B Attempt any Four.

- Q.1 A 3-phase, 4-wire system supplies power at 440 V and lighting at 200 V. If the lamps are use require 75 A, 80 A & 30 A in each of the three lines, what should be the current in the neutral wire? If a 3-phase motor is now started, taking 115 A from the lines at a p.f. of 0.5 lagging, what should be the total current in each line and the neutral wire?
- **Q.2** A two wire D.C. distributor AB is 225 m long. The across section area of each conductor is 0.27 cm^2 . The end A is supplied at 220 V. Resistivity of the wire is $1.78 \mu \Omega$ -cm. The load distribution is given in the table. Calculate (i) current in each section of the conductor (ii) the two-core resistance of each section (iii) the voltage tapping point C & D.

Atnoint	Distance from A in	Concentrated load in
At point	meters	Amp.
С	75	15
D	175	12
В	225	20

Q.3

A 800 meters 2-wire D.C. distributor AB fed from both ends is uniformly loaded at the rate of 1.2A/m run. Calculate the voltage at the feeding points A & B if the minimum potential of 200 V occurs at point C at a distance 450 m from the end A. Resistance of each conductor is 0.03 Ω/km .

- Q.4 A single core lead sheathed cable has a conductor diameter of 3cm; the diameter of the cable being 9 cm. The cable is graded by using two dielectrics of relative permittivity 4 & 3 respectively with corresponding safe working stresses of 33KV/cm & 22 KV/cm. Calculate the radial thickness of each insulation and safe working voltage of cable.
- Q.5 An overhead transmission line conductor having a parabolic configuration weighs 1.925 kg/m length. The c.s.a. of the conductor is 2 cm² and the ultimate strength is 8050 kg/cm². The supports are 550 m apart having 20 m difference of levels. Calculate the sag from the taller of the two supports which must be allowed so that the factor of safety shall be 4.

**************End of Question Paper**********

CO3, BT1 CO4, BT2, CO5 BT5

BT1

BT2.

BT4,

BT5

5

5

.

5

5

5

CO3

CO4,

C05

C03, BT1 C04, BT2, C05 DT5

BT5

BT1

,BT2,

BT3,

BT4

BT2

,BT3,

BT4,

BT5

C06,

C07

CO3.

CO4.

C05