

School: School of Science
Program/s: BSC Chemistry (CPM)
Year: 2nd Semester: 3rd

Examination: End Semester Examination

Examination year: December - 2021

Course Code: MA150 Course Name: Abstract Algebra - I

 Date:
 07/12/2021
 Total Marks:
 40

 Time:
 8:30 am to 10:30 am
 Total Pages:
 2

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted.

→ Draw all relevant waveforms in answer sheet only.

→ *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Marks	COs*	BTL#
Q.1		[10]		
i)	For a commutative group G , $ab = \underline{\hspace{1cm}} \forall a, b \in G$.		CO1, CO4	1, 2, 3, 5
ii)	The set of all $2x2$ matrices over \mathbb{Z} , is a ring with respect to multiplication. True/False			
iii)	The subgroup of a group contains the identity element $e \in G$. True/False			
iv)	Define order of an element $a \in G$			
v)	Define a group and give an example of a group.			
vi)	If $G = (\mathbb{Z}: +)$, $H = 3\mathbb{Z}$, then form all the cosets of H in G. How many distinct cosets will you get?	1.54.61		
Q. 2		[10]	T	
i)	Define normal subgroup of a group G. What is the group of all cosets of a normal subgroup known as?		CO1, CO3, CO4	1, 2, 4, 3, 5
ii)	Show that the mapping $\phi: G \to G'$ defined by $\phi(x) = e^x$, where $G = (\mathbb{R}, +)$ & $G' = (\mathbb{R}, .)$ is an isomorphism.			
iii)	Define Kernel of a mapping. Prove ϕ is a 1-1 homomorphism iff $Ker\{\phi\}=\{e\}$.			

	Section – II		All off I	
Q. 3	Attempt any 5 from the following:	[5]		
i)	Consider a group $G = \{1, -1, i, -i\}$ with operation of complex multiplication. What is the inverse of an element $-i$?			
ii)	Which two properties are enough to show that a non-empty set <i>H</i> is a subgroup of a group <i>G</i> ?		CO1, CO2	1, 2, 3, 5
iii)	What is the order of the permutation $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 3 \end{bmatrix}$?			
iv)	Define a group homomorphism.			
v)	Write a statement of the Cayley's theorem.			
vi)	Explain in your words, how symmetric groups S_n are useful in the field of Chemistry.			
Q. 4	Attempt any 5 from the following:	[15]		19.53
i)	Define the group $U(n)$. Write the elements of this group for $n = 15$. Is it a cyclic group?	9	CO1, CO2, CO3	1, 2, 4, 3, 5
ii)	Define a permutation group. Which operation is defined on a permutation group? Write any one example of a permutation group.			
iii)	What is a symmetric group S_4 ? What does it represent geometrically? Is it an abelian group? What is order of a symmetric group S_4 ?			
iv)	Let G be the group of nonzero real numbers under multiplication. Check whether the function from G to G defined by function $\phi(x)= x $ is homomorphism or not.			
v)	Consider following two permutations: $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{bmatrix} \text{ and } \beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{bmatrix}.$ Compute $\alpha\beta$ and $\beta\alpha$.			
vi)	Consider a permutations $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{bmatrix}$			
	Write it as a product of disjoint cycles and as a product of 2-cycles. Also determine its order.			

************End of Question Paper*******