

School: School of Science Program/s: MSc Chemistry (Organic) Year: 2nd Semester: 3rd

Examination: End Semester Examination

Examination year: December - 2021

Course Name: Advanced Synthetic Methods Course Code: CH223

Date: 07/12/2021 Total Marks: 40 Time: 08:30 am to 10:30 am Total Pages: 2

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

→ *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Marks	COs*	BTL#
Q.1	Predict the major products (A to I) and complete the following reactions.	8	CO1 CO2	BT1 BT2
	a) O TiCl ₃ A e) NaOH G Favorskii Rearrangement	3	CO3 CO4 CO5	BT3 BT4
	b) NOCI Pyridine B toluene C (f) H_2CO_3 H_2O H			N N N N N N N N N N N N N N N N N N N
	(c) Ph			
	(d) THF Sommelet-Houser rearrangement	2		
Q.2	Disconnect the following general class molecules into their reagents by known reliable methods.	6	CO1 CO2 CO3	BT1 BT2 BT3 BT4
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ВТ5
	(ii) $R^1 \longrightarrow R^2 \xrightarrow{'1,2'\text{-C-C}} C + D$ (v) $R \longrightarrow OH \xrightarrow{'1,2'\text{-C-C}} I + J$			
	(iii) $R^2 \xrightarrow{C-C} E + F$ (vi) $X \xrightarrow{R} R$ (vi) $K + L$	et E	e e	
			,×	

Page 1 of 2

	Disconnect the following intermediate by known reliable methods and write out the synthetic scheme according to the disconnection analysis, adding reagents and condition (wherever is applicable). (Any Four)	14	C01 C02 C03	BT1 BT2 BT3 BT4 BT5
	Ph NH_2 NH_2 NH_2	9		
20	Triamine intermediate (II) for Wieland-Miescher ketone (versatile synthon for synthesis of natural products Triamine intermediate (II) for the synthesis of anti-HIV drug Maraviroc (Pfizer) An alkyne intermediate (III) for the synthesis of Efavirenz (Anti-AIDS drug)			
	(diterpenes, steroids, etc.))			- P
	HO—OH OOH MeO			
	Salbutamol HO gingerol-6 (Anti-asthama drug) (flavoring principles of ginger)			
		2		
Q.4	Do as directed. (Any Three)	12	CO4	BT1
	(i) Freelain C. In the			
	 (i) Explain Sommelet-Hauser rearrangement and its mechanism with suitable example. (ii) Radicals are stabilized by both electron withdrawing and electron donating group. Justify. (iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. 	12	CO5	BT2 BT3 BT4
	(iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. Bromination of alkanes			BT3
	(iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate.			BT3
	(iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. Bromination of alkanes Chlorination of alkanes Br. by Br			BT3
	(iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. Bromination of alkanes Chlorination of alkanes Br ₂ , hv Br Spy 4 Spy 4 Spy 63%			BT3
	(iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. Bromination of alkanes Chlorination of alkanes Br ₂ , hv Br Spy 4 Spy 4 Spy 63%			BT3

*****End of Question Paper*******