School: School of Science Program/s: MSc Chemistry (Organic) Year: 2nd Semester: 3rd **Examination:** End Semester Examination Examination year: December - 2021 Course Name: Advanced Synthetic Methods Course Code: CH223 Date: 07/12/2021 Total Marks: 40 Time: 08:30 am to 10:30 am Total Pages: 2 ## Instructions: → Write each answer on a new page. → Use of a calculator is permitted/not permitted. → *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping | Q.
No. | Details | Marks | COs* | BTL# | |-----------|---|---------|-------------------|---------------------------------------| | Q.1 | Predict the major products (A to I) and complete the following reactions. | 8 | CO1
CO2 | BT1
BT2 | | | a) O TiCl ₃ A e) NaOH G Favorskii Rearrangement | 3 | CO3
CO4
CO5 | BT3
BT4 | | | b) NOCI Pyridine B toluene C (f) H_2CO_3 H_2O H | | | N N N N N N N N N N N N N N N N N N N | | | (c) Ph | | | | | | (d) THF Sommelet-Houser rearrangement | 2 | | | | Q.2 | Disconnect the following general class molecules into their reagents by known reliable methods. | 6 | CO1
CO2
CO3 | BT1
BT2
BT3
BT4 | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | ВТ5 | | | (ii) $R^1 \longrightarrow R^2 \xrightarrow{'1,2'\text{-C-C}} C + D$ (v) $R \longrightarrow OH \xrightarrow{'1,2'\text{-C-C}} I + J$ | | | | | | (iii) $R^2 \xrightarrow{C-C} E + F$ (vi) $X \xrightarrow{R} R$ (vi) $K + L$ | et
E | e e | | | | | | ,× | | Page 1 of 2 | | Disconnect the following intermediate by known reliable methods and write out the synthetic scheme according to the disconnection analysis, adding reagents and condition (wherever is applicable). (Any Four) | 14 | C01
C02
C03 | BT1
BT2
BT3
BT4
BT5 | |-----|---|----|-------------------|---------------------------------| | | Ph NH_2 NH_2 NH_2 | 9 | | | | 20 | Triamine intermediate (II) for Wieland-Miescher ketone (versatile synthon for synthesis of natural products Triamine intermediate (II) for the synthesis of anti-HIV drug Maraviroc (Pfizer) An alkyne intermediate (III) for the synthesis of Efavirenz (Anti-AIDS drug) | | | | | | (diterpenes, steroids, etc.)) | | | - P | | | HO—OH OOH MeO | | | | | | Salbutamol HO gingerol-6 (Anti-asthama drug) (flavoring principles of ginger) | | | | | | | 2 | | | | Q.4 | Do as directed. (Any Three) | 12 | CO4 | BT1 | | | (i) Freelain C. In the | | | | | | (i) Explain Sommelet-Hauser rearrangement and its mechanism with suitable example. (ii) Radicals are stabilized by both electron withdrawing and electron donating group. Justify. (iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. | 12 | CO5 | BT2
BT3
BT4 | | | (iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. Bromination of alkanes | | | BT3 | | | (iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. | | | BT3 | | | (iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. Bromination of alkanes Chlorination of alkanes Br. by Br | | | BT3 | | | (iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. Bromination of alkanes Chlorination of alkanes Br ₂ , hv Br Spy 4 Spy 4 Spy 63% | | | BT3 | | | (iii) Bromination of alkanes is more selective than chlorination (following reaction). Justify your answer based on Hammond's Postulate. Bromination of alkanes Chlorination of alkanes Br ₂ , hv Br Spy 4 Spy 4 Spy 63% | | | BT3 | *****End of Question Paper*******