Navrachana University School of Liberal Studies and Education, M.Sc. Program

End Semester Examination May, 2017 First Year and Second Semester Solid State Chemistry, CH-125

Date: 15/05/2017 Total Marks: 40

Time: 10.30 AM to 12.30 PM

Instructions:

→ Answer all sections

→ Use of scientific non-programmable calculator is permitted.

A. Answer any eight of the following questions

(2X8=16 Marks)

- 1. Explain Wagner reaction mechanism of formation of MgAl₂O₄ spinel from the solid state reaction between MgO and Al₂O₃ crystals.
- 2. Show that the reciprocal lattice to simple cubic lattice itself a simple cubic lattice.
- 3. Through Ewald sphere construction obtain Bragg's diffraction condition in terms of reciprocal lattice vector **G**.
- 4. What are systematic absent reflections in XRD? What information can be obtained through the analysis of systematic absences?
- Justify the following statement "In x-ray diffraction of crystals, satisfying Bragg's equation is necessary but not sufficient"
- 6. Write two factors on which form factor of an atom is dependent on?
- 7. Sketch the variation of electrical conductivity with respect to temperature for a semiconductor and explain various regions which could be observed in the plot.
- 8. What are Brillouin zones? Construct two dimensional Brillouin zone for a cubic lattice indicating clearly first and second Brillouin zones.
- 9. Explain how antiferromagnetism is explained on the basis of super exchange interaction in NiO.
- 10. The Bragg angle corresponding to a reflection for which $h^2+k^2+l^2=8$ is found to be 14.35°. Determine the lattice parameter of the crystal. X-rays of wavelength 0.71 A° are used. If there are only two other reflections with smaller Bragg angle, what could be the possible crystal structure?

B. Answer any six questions

(4x6=24 Marks)

1. From a powder camera of diameter 114.6 mm, using an X-ray beam of λ = 1.54 A°, the following 's' (separation between pair of arcs in Debye-Scherrer film) values in mm are obtained for a material

86, 100, 148, 180, 188, 232 and 272. Determine the crystal structure and lattice parameter.

- 2. Calculate the structure factor for face centered cubic cell.
- 3. (a) What are the three main film techniques employed in single crystal x-ray diffraction?
 - (b) Discuss briefly how space group can be identified through precession method?
- 4. (a) Explain the origin of energy bands in solids.
 - (b) Through band theory of solids, explain n-type and p-type semiconductors.
- 5. Discuss in detail Weiss molecular field theory of ferromagnetism.
- 6. Sketch the variation of magnetic susceptibility with respect to temperature for paramagnetic, ferromagnetic and antiferromagnetic materials and explain.
- 7. Explain with proper diagram the sequence of symmetry operations for trigonal point group 32.
- 8. The results of an x-ray diffraction experiment using x-rays with λ =0.7107 A° show that diffracted peaks occur at the following 20 angle.

Peak	2θ (°)
. 1	20.20
2	28.72
3	35.36
4	41.07
5	46.19
6	50.90
7	55.28
8	59.42

Determine the crystal structure, the indices of the plane producing each peak and the lattice parameter.

