Navrachana University School of Liberal Studies & Education, M.Sc. (Chemistry)

End Semester Examination [May 2017] First Year, Semester II, CH 122, Organic Reaction Mechanisms

Date:11/05/2017

Time: 10.30 - 12:30 PM

Marks: 40

Important Instructions

- 1. All the Questions are Compulsory.
- 2. Please read the questions carefully and answer accordingly.
- 3. This question paper contains TWO pages.

Q 1. Complete the following reactions:-

 $[Marks = 6 \times 2 = 12]$

e.
$$O_2N \longrightarrow CI + I \longrightarrow CU$$
 $O_2N \longrightarrow CI + I \longrightarrow CU$ $O_2N \longrightarrow CI$

f. O Me
$$Cul, K_2CO_3$$

$$+ Cul, K_2CO_3$$

$$microwave$$

Q 2. Answer the following questions in brief:-

 $[Marks = 6 \times 3 = 18]$

- a. State important characteristics of pericyclic reactions.
- b. What are the different types of sigmatropic reactions? Give one example of each type.
- c. What is the plausible mechanism of sonogashira reaction?
- d. Write short note on Suzuki cross coupling reaction.
- e. There is an organic redox reaction in which an *ortho* or *para*-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide in base to form a benzenediol and acarboxylate. Overall, the carbonyl group is oxidized, and the hydrogen peroxide is reduced. Identify the rearrangement described & write its overall reaction.
- f. It is a chemical reaction used in organic chemistry for ring formation. It was discovered by Robert Robinson in 1935 as a method to create a six membered ring by forming three new carbon–carbon bonds. The method uses a ketone and a methyl vinyl ketone to form an α,β-unsaturated ketone in a cyclohexane ring by a Michael addition followed by an aldol condensation. This procedure is or the key methods to form fused ring systems. Identify the rearrangement described & write its overall reaction.

Q 3. Answer any TWO of the following in detail:-

 $[Marks = 2 \times 5 = 10]$

a. Draw an arrow pushing mechanism for the following reaction:

$$\begin{array}{c}
0 \\
R_1 \\
0 \\
R_2
\end{array}$$

$$\begin{array}{c}
0 \\
R_2 \\
0 \\
0
\end{array}$$

- b. How organozinc compounds are prepared & what are their synthetic uses?
- c. Draw molecular orbital diagram for butadiene and demonstrate how Woodward Hoffmann rules are used to check feasibility of electrocyclic reactions.
