Enrollment	ID:	

NAVRACHANA UNIVERSITY

School of Liberal studies and Education

(M.Sc. Program)

End Semester Examination November 2017 SY-M.Sc 1st Semester

Course Title: Genetics (LS 105)

Marks: 40

Date: 20/11/2017 Time: 10:30 am to 12:30 pm

Important Instructions

1. All the Questions are Compulsory

- 2. Please read the questions carefully and answer accordingly
- 3. Draw a neat and labeled diagram wherever necessary

Q1. Choose the correct option

(1 × 10= 10 M)

- 1. If an organism is diploid and a certain gene found in the organism has 18 known alleles (variants), then any given organism of that species can/must have which of the following?
- A) At most, 2 alleles for that gene
- B) Up to 18 chromosomes with that gene
- C) Up to 18 genes for that trait
- D) A haploid number of 9 chromosomes
- E) Up to, but not more than, 18 different traits
- 2. Experiments with cohesions have found that
- A) cohesions are protected from destruction throughout meiosis I and II.
- B) cohesions are cleaved from chromosomes at the centromere before anaphase I.
- C) cohesions are protected from cleavage at the centromere during meiosis I.
- D) a protein cleaves cohesions before metaphase I.
- 3. A tetrad includes which of the following sets of DNA strands?
- A) Two single-stranded chromosomes that have synapsed
- B) Two sets of sister chromatids that have synapsed
- C) Four sets of sister chromatids
- D) Four sets of unique chromosomes
- 4. Pea plants were particularly well suited for use in Mendel's breeding experiments for all of the following reasons *except* that
- A) peas show easily observed variations in a number of characters, such as pea shape and flower color.
- B) it is possible to control matings between different pea plants.
- C) it is possible to obtain large numbers of progeny from any given cross.
- D) peas have an unusually long generation time.
- 5. When crossing an organism that is homozygous recessive for a single trait with a heterozygote, what is the chance of producing an offspring with the homozygous recessive phenotype?
- A) 0%
- B) 25%
- C) 50%
- D) 75%

- 6. An obstetrician knows that one of her patients is a pregnant woman whose fetus is at risk for a serious disorder that is detectable biochemically in fetal cells. The obstetrician would most reasonably offer which of the following procedures to her patient?
- A) CVS
- B) Ultrasound imaging
- C) Amniocentesis
- D) Fetoscopy
- 7. Males are more often affected by sex-linked traits than females because
- A) males are hemizygous for the X chromosome.
- B) male hormones such as testosterone often alter the effects of mutations on the X chromosome.
- C) female hormones such as estrogen often compensate for the effects of mutations on the X.
- D) X chromosomes in males generally have more mutations than X chromosomes in females.
- 8. SRY is best described in which of the following ways?
- A) A gene region present on the Y chromosome that triggers male development
- B) A gene present on the X chromosome that triggers female development
- C) An autosomal gene that is required for the expression of genes on the Y chromosome
- D) An autosomal gene that is required for the expression of genes on the X chromosome
- 9 A Barr body is normally found in the nucleus of which kind of human cell?
- A) Unfertilized egg cells only
- B) Sperm cells only
- C) Somatic cells of a female only
- D) Somatic cells of a male only
- 10. One possible result of chromosomal breakage is for a fragment to join a non homologous chromosome. What is this alteration called?
- A) Deletion
- B) Disjunction
- C) Inversion
- D) Translocation

Q2. State True or False and justify:

 $(1 \times 3 = 3M)$

- 1. The severity of genetic diseases decreases as they are passed through the generations.
- 2. Cytoplasmic inheritance follows Mendelian principles of inheritance
- 3. Nucleosomes are the core for protecting DNA from mutations

Q3. Define the following

(1×6=6M)

- 1. Heterochromatin
- 2. Barr body
- 3. Q banding
- 4. Reciprocal translocations
- 5. Inversions