Student ID:

NAVRACHANA UNIVERSITY SLSE, BSc PROGRAME **END SEMESTER EXAMINATION**

1st Year, Semester - I

Academic Year 2017 - 2018

Subject: DIFFERENTIAL CALCULUS(MAJOR/MINOR)

Course Code: MA123/125

Date: 30/11/2017

Time: 10:30AM - 11:30PM

Marks: 40

Instructions:

- Calculator is permitted.
- Write answers in answer book only.

Q-1 Answer the following questions

(2x4 = 08 marks)

1. The equation of the Tangent line to the curve $y = x^3 - 3x + 2$ at the point (2,4) is

a.
$$9x - y + 14 = 0$$

b.
$$9x - y - 14 = 0$$

c.
$$9x + y + 14 = 0$$

d.
$$9x + y - 14 = 0$$

2. The limit of the given function $\lim_{x\to 0} x^x$ is

a.
$$-1$$
 b. ∞ c. 0 d. x e. None of the given

3. If
$$x=2cost-cos2t$$
 , $y=2sint-sin2t$; then the value of $\frac{d^2y}{dx^2}$ at $t=\frac{\pi}{2}$ is

$$a - 2 b.2$$

$$a-2$$
 b.2 c.3/2 d. $-3/2$ e. None of the given

4. The n^{th} derivative of $\frac{1}{1-5x+6x^2}$ is

a.
$$(n!) \left[\left(\frac{3}{1-3x} \right)^{n+1} - \left(\frac{2}{1-2x} \right)^{n+1} \right]$$
 b. $(n!) \left[\left(\frac{3}{1-3x} \right)^{n+1} + \left(\frac{2}{1-2x} \right)^{n+1} \right]$

b.
$$(n!) \left[\left(\frac{3}{1-3x} \right)^{n+1} + \left(\frac{2}{1-2x} \right)^{n+1} \right]$$

c.
$$(n!) \left[\left(\frac{4}{1-3x} \right)^{n+1} - \left(\frac{3}{1-2x} \right)^{n+1} \right]$$
 c. $(n!) \left[\left(\frac{4}{1-3x} \right)^{n+1} + \left(\frac{3}{1-2x} \right)^{n+1} \right]$

c.
$$(n!)$$
 $\left[\left(\frac{4}{1-3x} \right)^{n+1} + \left(\frac{3}{1-2x} \right)^{n+1} \right]$

e. None of the given

Q-2 Answer the following questions (Any Four)

(4X4=16 marks)

1. State Lagrange's Mean Value Theorem and examine the validity of the hypotheses and the conclusion of Roll's theorem for the function

$$f(x) = 1 - (x - 1)^{\frac{2}{3}}$$
 on [0,2].

- $f(x) = 1 (x 1)^{\frac{2}{3}} \text{ on } [0,2].$ 2. Evaluate: $\lim_{x \to 4} \left[\frac{1}{\log(x-3)} \frac{1}{x-4} \right]$
- 3. Find the n^{th} derivative of sin^4x .
- 4. Find the points on the curve $y = x^3 3x + 5$ at which the tangent line:
- (a) is parallel to the straight line y = -2x;
- (b) is perpendicular to the straight line $y = -\frac{x}{9}$;
- 5. Expand the function $f(x) = \sin^2 x x^2 e^{-x}$ in positive integral powers of x up to the terms of the fourth order of smallness with respect to x.
- 6. State Taylor's expansion series for expansion of f(x) and use it to find the expansion of sinx.

Q-3 Answer the following questions (Any Two)

(6X2= 12 marks)

1. Find the n^{th} derivative of $\frac{x^2+4x+1}{x^3+2x^2-x-2}$. 2. If u and v are two functions of x having derivatives of the n^{th} order, then prove that $(u,v)_n = u_n \cdot v + \binom{n}{1} u_{n-1} v_1 + \binom{n}{2} u_{n-2} v_2 + \dots + \binom{n}{r} u_{n-r} v_r + \dots + \binom{n}{n} u \ v_n.$

3. If $y = sin(msin^{-1}x)$, prove that $(1-x^2)y_{n+2} = (2n+1)xy_{n+1} + (n^2 - m^2)y_n.$

Q-4 Answer the following question:

(4X1= 04 marks)

1. The registrar of Kellogg University estimates that the total student enrollment in the Continuing Education division will be given by $N(t) = \frac{-20,000}{\sqrt{1+0.2t}} + 21,000$

Where, N(t) denotes the number of students enrolled in the division t yr from now. Using the Taylor series of N(t)at t=0, find an approximation of the average enrollment at Kellogg University between t=0 and t=2.