Enrol	lment	ID:	
		11.	

NAVRACHANA UNIVERSITY SLSE-B.Sc PROGRAMME END SEMESTER EXAMINATION NOV-17

S.Y B.Sc Semester - 3

SUB: VECTOR CALCULUS(MAJOR/MINOR	MATHEMATICS
COURSE CODE, MA 210/220	in the state of th

COURSE CODE: N	IA 219/220	
Date:23/11/17	Total Marks = 40	Time: 3.30PM TO 5.30PM
7		1 mic. 3.301 W1 10 3.30F W1

Instructions:

→ Write each answer on a new page.

→ Use of calculator is permitted

Q1:Following	are	the	MCQ'S
--------------	-----	-----	-------

(10 M)

- 1. Unlike vectors have
- (a) parallel direction (b) perpendicular direction (c) opposite direction
- 2. Dot product of two vectors gives _____ as a result
- (a) vector
- (b) scalar (c) zero
- 3. Work done = ____
- (a) Fd (b) FD (c) Fd
- 4. Vector area of Parallelogram with sides i-2j+3k and 2i+j+4k is _____
- (a) $5\sqrt{6}$ (b) $5\sqrt{5}$ (c) $6\sqrt{5}$
- 5. Angular velocity is _____ quantity.
- (a) scalar (b) physical (c) vector
- Q2: Do as directed. (ALL ARE COMPULSORY)

(20 M)

- 1. The temperature at any point in space is given by T = xy + yz + zx. Determine the derivative of T in the direction of the vector 3i 4k at the point (1,1,1).
- 2. Find the divergence and curl of the vector field $V=(x^2-y^2)i+2xyj+(y^2-xy)k$.
- 3. Show that the vector field given by $A=3x^2yi+(x^3-2yz^2)j+(3z^2-2y^2z)k \ is \ irrotational \ but \ not \ solenoidal.$
- 4. If F=2zi-xj+yk then evaluate $\iiint_V Fdv$ where v is the region bounded by surfaces $x=0,y=0,x=2,y=4,z=x^2,z=2$.
- 5 . Using Green's theorem evaluate $\int_c (x^2 + xy)dx + (x^2 + y^2)dy$ where c is the square formed by the lines $x = \pm 1, y = \pm 1$.

Q3: State the following.

(10 M)

- 1. Distinguish between scalar and vector quantities with its examples.
- 2. State Green's theorem
- 3. State Stoke's theorem

4. Calculate the modulus and the unit vector along the sum of vectors i + j + 3k, 2i - 2j + 6k and 4i + 2j - 4k.

5. Find the projection of the vector i - 2j + k on 4i - 4j + 7k.