Student ID:

NAVRACHANA UNIVERSITY SLSE, BSc PROGRAME END SEMESTER EXAMINATION

3rd Year, Semester - V Academic Year 2017 - 2018

Subject: LINEAR ALGEBRA

Course Code: MA302

Marks: 40

Time: 01:00PM - 03:00PM

Date: 20/11/2017

Instructions: → Calculator is permitted.

→ Write answers in answer book only.

- 1. Let $T: V_4 \to V_3$ be a linear map defined by $(e_1) = (1,1,1), T(e_2) = (1,-1,1), T(e_3) = (1,1,1), T(e_3)$ (1,0,0), $T(e_4) = (1,0,1)$. Then verify that $r(T) + n(T) = \dim(V_4)$.
- 2. True of False: "No Linear Transformation from V_4 to V_2 can be one-one." . Why?

Q-2: Answer the following questions: (Any Three)......3x4 = 12

1. Define and find the Range and Kernel of given maps.

D: $C^1(a,b) \to C(a,b)$ defined by D(f) = f'.

2. Prove that the linear map T: $V_3 \rightarrow V_3$ defined by

 $T(e_1) = e_1 - e_2$, $T(e_2) = 2e_2 + e_3$, $T(e_3) = e_1 + e_2 + e_3$

is neither one-one nor onto.

- 3. Let T: $U \rightarrow V$ be a linear map then R(T) is a subspace of V.
- 4. If T: $U \rightarrow V$ be a linear map and dim $U=\dim V=p$. Then show that T is onto \iff n(T)=0.1.
- 5. Check the linearity of the following maps.

(a) $T:V_1 \to V_3$ defined by T(x) = (x, 2x, 3x)

(b) $T: C[0,1] \to V_2$ defined by T(f) = (f(0), f(1)).

Q-3: Answer the following questions: (Any Three).....3x8=24 Marule S

- 1. Let T: $U \rightarrow V$ be a linear map. Then
- (a) If T is one-one and u_1 , u_2 , ..., u_n are LI vectors of , then $T(u_1)$, $T(u_2)$, ..., $T(u_n)$ are
 - (b) If $v_1, v_2, ..., v_n$ are LI vectors of R(T) and $u_1, u_2, ..., u_n$ are vectors of U such that $(u_1) = v_1, T(u_2) = v_2, ..., T(u_n) = v_n$, then $u_1, u_2, ..., u_n$ are LI.
- 2. Prove if T: $U \to V$ be a nonsingular linear map. Then $T^{-1}: V \to U$ is a linear, one-one,

4. Determine whether there exists a linear map in the following cases, and where it does exist give the general formula.

(a) $T: V_2 \to V_2$ such that T(1,2) = (3,0) and T(2,1) = (1,2).

(b) $T: \mathcal{P}_4 \to \mathcal{P}_3$ such that T(1+x)=1 , T(x)=3 and $T(x^2)=4$.

Page No: -