Navrachana University School of Liberal Studies and Education, B.Sc. Program

End Semester Examination May, 2017 First Year and Second Semester Physics-II, PH-112

Total Marks-40 Date: 10/05/2017

Duration: Two Hours (10.30 AM-12.30 PM)

Instructions:

Answer all sections

Use of non programmable scientific calculator is permitted.

A. Choose the correct answer

(1x10=10 Marks)

- 1. If ΔE is the uncertainty in the measurement of energy of a particle and Δt is the time required for measurement, then the Heisenberg uncertainty relation is
 - (a) $\Delta E \Delta t \leq (h/4\pi)$
- (b) $\Delta E \Delta t \ge (h/4\pi)$
- (c) $\Delta E \Delta t = 4\pi/h$

- (d) $\Delta E \Delta t \leq 4\pi/h$
- 2. Operator associated with x-component of linear momentum is

(a)
$$i\left(\frac{h}{2\pi}\right)\partial/\partial t$$

(a)
$$i\left(\frac{h}{2\pi}\right)\partial/\partial t$$
 (b) $-i\left(\frac{h}{2\pi}\right)\partial/\partial t$

$$(c) - i\left(\frac{h}{2\pi}\right)\partial/\partial x$$

$$(d)i\left(\frac{h}{2\pi}\right)\partial/\partial x$$

- 3. If $\Psi(x,t)$ represents wavefunction, then the probability density of finding a particle is given by
 - (a) $|\Psi(x,t)|^2$
- (b) $|\Psi(x,t)|^3$

(c) $|\Psi(x,t)|^{1/2}$

- (d) $|\Psi(x,t)|^{-1/2}$
- 4. An observer O' fixed with respect to an occurrence measures the interval Δt_o. An observer O moving with relativistic speed 'u' with respect to O' measures the time interval Δt for the same occurrence. The time dilation effect is represented by
 - (a) $\Delta t = \Delta t_0 / (1 u^2/c^2)^{1/2}$
- (b) $\Delta t_0 = \Delta t / (1 u^2/c^2)^{1/2}$ (c) $\Delta t = \Delta t_0$

(d) $\Delta t = \Delta t_0 / (1 - u^2/c^2)$

Where 'c' is the speed of light.

5. The curl of a v	ector function 'v' is	written mathematically	y as
(a) ∇. v (b) ∇ x v		Vins esibilità lei	(c) ∇v
(d) ∇ x ∇v			
6. When the diver	gence of a vector fi	eld 'v' is zero, then the	vector field is regarded as
(a) solenoidal		(b) irrotational	(c) rotational
(d) complex			
7. The atomic dia	meter of an BCC cr	rystal (if a is lattice para	nmeter) is
(a) a	(b) a/2	(c)a/(2/√3)	(d) a/(4/√2)
		FCC type crystals responsible unit cell of their respect	ectively, then the number of etive crystals is
(a) 4 and 2	(b) 9 and 14	(c) 4 and 9	(d) 2 and 4
9. The direction a	along the face diago	nal of a unit cell of cub	ic crystal is denoted by
(a) [111]	(b) [100]	(c) [011]	(d) [112]
10. Van der Waals	s bond is formed du	e to	
		ction	zako (*) itali (*) z monten banye itali yelanog
3. Answer any sev	en questions		(2x7=14 Marks)
		vave packets represents special theory of relative	The second contract of the second
3. Find the g	radient of the follow	ving scalar function	
Ф	$(x,y,z) = x^3 + y^3 + z$	3	

Write Ampere's law both in integral and differential forms.

Show that the work done by magnetic field is always zero.

4.

5.

- 6. Why a face centered tetragonal unit cell is not included among Bravais lattices?
- 7. Write a short note on ABABA and ABCABC type of packing and give examples of each
- 8. What is the difference between acoustic and optical phonons?
- What is resolving power of an instrument? State Rayleigh criteria for resolution of two closely spaced objects.
- 10. What are conditions to form sustained interference of light waves?

C. Answer any four questions

(4x4=16 Marks)

- 1. Write the experimental observations of photoelectric effect?
- 2. Derive an expression for time dilation effect.
- An infinite plane carries uniform surface charge 'σ'. Find the electric field above and below the plane.
- Draw the schematic of Newton's rings experiment. Write down conditions for constructive and destructive interference and hence derive expression for diameter of mth dark ring.
- Derive expression for lattice specific heat using classical theory. Plot the same as observed experimentally and comment why the classical theory is unable to explain the experimental results.
- 6. Calculate Miller indices for the following crystal planes in unit cubical lattice.

