Enrollment ID: _____

Navrachana University School of Liberal Studies and Education End-Semester Examination November 2017 M.Sc., Semester-I Basics of Analytical Chemistry, CH-112

Date: 29/11/2017

Marks: 40

Time: 10:30 AM to 12:30 PM

Instructions:

- → All Sections are compulsory.
- → Please read the questions carefully and answer accordingly.
- → Draw a neat and labeled diagram wherever necessary.
- → This question paper contains FOUR pages.

SECTION A. Answer the following

[Marks = $1 \times 20 = 20$]

I. Multiple Choice Questions

- 1. What piece of laboratory equipment is best-suited for accurately measuring the volume of a liquid?
 - a) graduated cylinder
 - b) beaker
 - c) Erlenmeyer flask
 - d) d) more than one of the above
- 2. The independent variable in an experiment is
 - a) The variable you hope to observe in an experiment.
 - b) The variable you change in an experiment.
 - c) The variable that isn't changed in an experiment.
 - d) none of these is correct
- 3. "Qualitative results" refer to
 - a) Results that can be observed during an experiment.
 - b) Results that are difficult to observe during an experiment.
 - c) Results that require numerical data.

onc

1

- d) none of these is correct.
- 4. When drawing a graph that measures family average income over a period of 50 years, the independent variable is
 - a) Income
 - b) Average
 - c) Years
 - d) It is impossible to say
- 5. Accuracy is defined as
 - a) A measure of how often an experimental value can be repeated.
 - b) The closeness of a measured value to the real value.
 - c) The number of significant figures used in a measurement.
 - d) None of these
- 6. How many significant figures are present in the number 10,450?
 - a) three
 - b) four
 - c) five
 - d) none of these
- 7. A homogenous material is defined as being
 - a) An element
 - b) Any material with uniform composition
 - c) Synonymous with "solution"
 - d) More than one of these
- 8. 10 times the standard deviation of the blank
 - a) selectivity (specificity)
 - b) detection limit (LOD)
 - c) standard operating procedures (SOP)
 - d) lower limit of quantitation (LOQ)
- must collect representative samples, and analyte must be preserved after sample is collected; otherwise, even the most accurate analysis is meanin⁻¹ (quality assurance)

begins with sampling)

- a) accuracy and precision
- b) spike (fortification)
- c) sampling requirements
- d) types of precision
- 10. capability of responding reliably and measurably to changes in analyte concentration; the detection limit of an analytical method must be lower than the concentrations to be measured; slope of the calibration curve (delta signal / delta analyte concentration)
 - a) specificity
 - b) robustness
 - c) method validation
 - d) sensitivity

II. Write True or False

- Instrument precision, intra-assay precision, intermediate precision, interlaboratory precision → types of precision.
- 2. Everything in the sample other than the analyte \rightarrow specificity.
- 3. The process of proving that an analytical method is acceptable for its intended purpose; demonstrate that requirements are met for specificity, linearity, accuracy, precision, range, limit of detection, limit of quantitation, and robustness → method blank.
- The ability of an analytical method to be unaffected by small changes in operating parameters → assessment.
- 5. The relative response to analyte and standard \rightarrow response F factor.
- A plot between volume of solution and amount of acid/base added from a burette is known as titration cure.
- 7. If [HIn] / [In] ratio \geq 10 or [HIn] / [In] ratio \leq 0.1 color will not appears constant.
- 8. Four type of algebraic equations are used to solved multiple equilibrium problems.
- 9. Mass balance equations are direct results of conversation of mass moles.
- 10. When the solution of a salt of EDTA is added to metallic solution it will liberate 4 H⁺ ions.

SECTION B. Answer any FIVE of the following.

 $[Marks = 2 \times 5 = 10]$

- 1. Monobasic acid has dissociation constant 1.8×10^{-5} at 25 C. Calculate degree of dissociation at concentration 0.2M at same temperature. What will concentration of Hydrogen ion.
- 0.1 M acetic acid is dissociated to the extent of 1.33% at room temperature. Calculate dissociation constant at this temperature.
- 3. Dissociation constant of formic acid and acetic acid is 1.77×10^{-4} & 1.75×10^{-5} calculate relative strength of two acids.
- 4. Calculate the pH and the hydrogen ion concentration of 3.2×10^{-3} M solution of Ba(OH)₂ in water at 25 °C
- 5. Calculate the H⁺ ion concentration in moles per liter of solution whose pH is 2.1.
- 6. Write about the Arrhenius concept of acid-base.
- 7. Write Bronsted lowry concept.

SECTION C. Answer any TWO of the following questions.

[Marks = $5 \times 2 = 10$]

- 1. Discuss different type of EDTA titration.
- 2. Write the Mass balance equation for equilibrium system.
- 3. Write the Charge balance equation for equilibrium system.
- 4. Explain Job's Method for continous variation.

-----End of Question Paper-----

oin: