Student ID:

NAVRACHANA UNIVERSITY SLSE, BSc PROGRAME END SEMESTER EXAMINATION

1rd Year, Semester -I

Academic Year 2017 - 2018

Subject: Integral Calculus and Di	ifferential	Equation
-----------------------------------	-------------	----------

Course Code: MA122

Date: 22/11/2017

Marks: 40

Time: 10:30 AM - 12:30 PM

Q-1) Multiple choice questions.

(6X2=12)

- 1) If $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying f(x) + f(3-x) = 4, then $\int_0^3 f(x)dx$ is equal to

c) 6

d) 8

- 2) The value of $\int \frac{dx}{e^{x}+1}$ is
 - a) $\log(e^x 1) + c$

- b) $\log(e^x + 1) + c$
- $d) x \log(e^x + 1) + c$
- d) None of these.

- 3) $\int_{0/4}^{0/2} \frac{\cos x}{\sin x} dx is$
 - a) $ln\sqrt{2}$
- b) $ln\frac{\Pi}{A}$
- c) $ln\sqrt{3}$
- d) $ln \frac{\sqrt{3}}{2}$

- 4) Physically, integrating $\int_a^b f(x)dx$ means
 - a) Area under the curve from a to b
 - b) Area to the left of point a
 - c) Area to the right of point b
 - d) Area above the curve from a to b
- 5) The area of a circle of radius a can be found by the following integral a) $\int_0^a (a^2 - x^2) dx$ b) $\int_0^{2\Pi} \sqrt{a^2 - x^2} dx$ c) $4 \int_0^a \sqrt{a^2 - x^2} dx$ d) $\int_0^a \sqrt{a^2 - x^2} dx$

- 6) The value of the integral $\int_{-\Pi/2}^{\Pi/2} \sqrt{\frac{1-\cos x}{1+\cos x}} \ dx$ is equal to
 - a) 0

- b) 2log2
- c) П
- d) $\frac{1}{2}log2$

Q-2) Do as directed.(Attempt any four)

(4X3=12)

- 1) Solve $\int \frac{1+x^2}{1+x^4} dx$.
- 2) Define order and degree of an differential equation with an example.
- 3) Find differential equation of the family of curves $y = e^x(A\cos x + B\sin x)$. Where A and B are arbitrary constants.
- 4) Solve $\frac{dy}{dx} = \frac{\sin x + x\cos x}{y(2\log y + 1)}$. 5) Prove that $I = \int_0^{\pi} \frac{x \sin x \, dx}{1 + \cos^2 x} = \frac{\pi^2}{4}$.

Q-3) Do as directed. (Attempt any four)

(4X4=16)

- 1) Solve $\int \frac{x^2+1}{(x+2)^3(x-1)}$
- 2) $\int_0^{\pi/2} \sin 2x \log (\tan x) dx$
- 3) Solve $x^2(x^2 1)\frac{dy}{dx} + x(x^2 + 1)y = (x^2 1)$
- 4) Solve $x \sin x \frac{dy}{dx} + (x \cos x + \sin x)y = \sin x$.
- 5) $\frac{dy}{dx} + 3x^2y = x^5e^{-3}$.

All The Best-