
Chapter 6

Basis Criteria for Generalized Spline

Modules on Some Isomorphic Graphs

6.1 Introduction

In this chapter, we have studied basis criteria for generalized splines on some isomorphic

graphs over GCD domain.We observed that graphs which are isomorphic to each other

have same or equivalent basis criteria since zero trails of these graphs are same and thus

QG is also same for these graphs. We proved that basis criterion for generalized spline

modules on each graph of an arbitrary set of isomorphic graphs is same over any GCD

domain if flow-up basis exists for those graphs over GCD domain.

Thereafter, we focussed on the tree graphs as they are used abundantly in storing

hierarchical data as non-linear data structures, organise data for quick search, insertion,

deletion and network routing algorithms. Isomorphism in trees establish structural

similarities between them, thereby finding variety of applications in diverse disciplines

such as social sciences, science and technology, organisational structures etc. Subtree

isomorphisms are used where pattern matching plays a significant role in searching the

identical problems which can be compared. Defining algebraic structures such as rings

and modules over trees provide deeper understanding of the underlying combinatorics

thus opening newer areas of generating efficient algorithms for problem solving. We

have seen that if two graphs are isomorphic then the zero trails of their vertices are

identical.As a result we have concluded that isomorphic graphs have equivalent bases and

basis criteria, whenever generalized modules on these graphs are free or generating sets

exist.The result does not have strong implications for arbitrary graphs over GCD domains

as no polynomial-time algorithm exists for checking the isomorphism between graphs in
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general.However,as AHU algorithm exists for tree graph isomorphisms, our results are

generalized over ordered rooted tree graphs which form a very important class of graphs

in Computer Network Theory.

Generalized spline modules on trees always have a flow-up basis even when R is not a

PID[7].We have constructed flow-up basis for generalized spline modules on an arbitrary

tree over any GCD domain. An algorithm is developed for indexing the vertices of an

ordered rooted tree graph such that the above method can generate a flow-up basis for

tree graph and its isomorphic graphs.

6.2 Preliminaries

Most of the results and discussions that will be needed to understand the results of this

chapter are already discussed in the previous chapters.However,we mention some of them

again in brief for the convenience of understanding the results of this chapter.

We first discuss the AHU algorithm as in [24], for the isomorphism in trees.

• AHU Algorithm[24]

This Algorithm determines tree isomorphism in time O(| V |) by associating a tuple

with each vertex of a tree that describes the complete history of its descendants.

The AHU [24] algorithm is a serialization technique for representing the vertices

of a tree as unique string and is able to capture a complete history of a tree’s

degree spectrum and structure, ensuring a deterministic method of checking tree

isomorphisms.In this algorithm, leaf nodes are assigned with (). Every time we move

upwards, we combine, sort and wrap the parentheses.We can’t process a node until

we have processed all its children.For example, suppose we have a tree with a single

parent and two leaf nodes. So we assign () to the leaves. When we move towards the

parent node, we combine the parentheses of leaves like ()() and wrap it in another

pair of parentheses like (()()) and assign it to the parent. This process continues

iteratively until we reach the root node. [See Fig.6.1].

We particularly consider the rooted trees because root of a tree represents the “start”

of the data. The root of a tree can be any vertex, but if it has to be determined

uniquely, the centre of the tree is the best choice. Another important information

assigned to the rooted trees is the ordering of the children (from left to right). Such

a tree is called an ordered rooted tree. The definition of isomorphism in ordered

rooted trees is as follows:
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Fig. 6.1: Encoded ordered rooted tree using the AHU Algorithm

• Isomorphism in ordered rooted trees[1]

Two ordered rooted trees are isomorphic if there exists an isomorphism of rooted

trees, such that it preserves the order of children of every vertex. For example, the

two trees in Fig.6.2 are isomorphic as trees but not as ordered rooted trees because

the order of the children of the roots are different.

Fig. 6.2: Two isomorphic trees

We can encode any ordered rooted tree by assigning a string of 0’s and 1’s, which

uniquely determine the tree by using the AHU algorithm. In AHU algorithm,

parenthetical tuples are assigned to all tree vertices. However, these parenthetical

tuples have no ordering. Replacing “(“ with “1” and “)” with “0”, the parenthetical

names are converted into canonical names, which can be sorted lexicographically.

The following result from [24], can be used to check the isomorphism between two

trees.

• Theorem [24]

Two rooted trees are isomorphic if and only if they have the same canonical names

assigned to the roots. An example of isomorphic trees with the same canonical

names of the roots is shown in Fig.6.3.

The AHU -Tree isomorphism algorithm is O(| V |2), but can be improved to O(| V |)
by assigning and sorting canonical names by levels and checking by levels that

canonical names agree.

As we know that Gilbert [55] has shown that the set of generalized splines R(G,α)

has a ring as well as a module structure over the base ring R. Also, definition

2.6 and proposition 2.7 [55] shows that isomorphism in graphs together with ring

automorphism induces isomorphism between the ring of generalized splines.
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Fig. 6.3: Two isomorphic trees with same canonical names

We give the definition of isomorphism in edge labeled graphs which is a composition

of ring automorphism together with graph isomorphisms as given in [55].It is as

follows

• Isomorphism in edge labeled graphs[55]

Let (G,α) and (G
′
, α′) be edge labelled graphs and R be a commutative ring. A

homomorphism of edge labeled graphs ϕ : (G,α) −→ (G
′
, α

′
) is a graph homomor-

phism ϕ1 : G −→ G
′
together with a ring automorphism ϕ2 : R −→ R, so that for

each edge e ∈ EG, we have ϕ2(α(e)) = α
′
(ϕ1(e)).

E
G

E
G’

Φ1

Φ2

I I

α α’

An isomorphism of edge–labeled graphs is a homomorphism of edge–labeled graphs

whose underlying graph homomorphism is an isomorphism.

• Proposition[55]:

If ϕ : (G,α) −→ (G
′
, α

′
) is an isomorphism of edge–labeled graphs then ϕ induces

an isomorphism of the corresponding rings of generalized splines ϕ∗ : RG −→ RG′

defined as ϕ∗(p)ϕ1(u)
= ϕ2(pu), for each u ∈ VG. Using the above proposition, we

have shown that isomorphic graphs together with ring automorphism also induce

module isomorphism ϕ∗ between R(G,α) and R(G′,α′ ).

The main result which was used by Selma Altinok and Samet Sarioglan in [8], for

giving a necessary and sufficient condition for the existence of a basis for the module

RCn is discussed below. First we discuss the formula for QG, for a graph G [defined

in [8]], as follows:

Let (G,α) be an edge labeled graph with k vertices. Fix a vertex vi on (G,α) with i

≥ 2. Label all vertices vj with j < i by zero. With notations in [8], QG is defined as
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QG =
∏k

i=2 [ {( p(i,0)t ) } | t = 1,...,mi] where mi is the number of the zero trails of

vi. The above definition of QG gives a necessary and sufficient condition for the

existence of basis for the generalized spline modules over the cycle graph Cn and

tree graph as in [8].

Lemma 6.2.3 and 6.2.5 in [8] give formulae QG for cycle graph Cn and tree graph

.Theorem 6.2.4 and 6.2.6 in [8] give the basis criteria for cycle graph and tree graph

in terms of the determinant of flow-up classes {F1, F2, . . . , Fn} for these graphs.

• Lemma[8]

Let (Cn, α) be an edge labeled n-cycle. Then QCn =
l1l2 . . . ln

(l1, l2, . . . , ln)

• Theorem [8]

Let (Cn,α) be an edge labeled n-cycle and let {F1, . . . , Fn} ⊂ R(Cn,α). Then

{F1, . . . , Fn} forms a basis for R(Cn,α) if and only if | F1F2 . . . Fn | = r·QCn , where r

∈ R is a unit.

• Lemma [8]

Let G be a tree with n vertices and k edges. Then QG = l1 . . . lk.

• Theorem [8]

Let G be a tree with n vertices and k edges. Then {F1, . . . , Fn} ⊂ R(G,α) forms a

basis for R(G,α) if and only if | F1F2 . . . Fn |=r·QG, where r ∈ R is a unit and R is a

GCD domain.

6.3 Results and Discussions

In this section, first we extend the ring isomorphism ϕ∗ : R(G,α) −→ R(G
′
,α

′
) to module

isomorphism ϕ∗ : R(G,α) −→ R(G′ ,α′ ) defined as follows:

ϕ∗(rp)(ϕ(u)) = ϕ2(rp)u

= ϕ2(r(p)u)

= r(ϕ2(pu))

for each u ∈ VG

This is true for any base ring R over which the module R(G,α) is defined. Thus, we see

that if two graphs G and G
′
are isomorphic, then any ring automorphism on R induces a

ring isomorphism ϕ∗ : R(G,α) −→ R(G′ ,α′ ) and module isomorphism ϕ∗ : R(G,α) −→ R(G′ ,α′ ).
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It is proved in [55] by Gilbert, Polster and Tymoczko, that if R is a domain then the

rank of the module R(G,α) is equal to | V |. In this case the module R(G′ ,α′ ) will also have

the same rank | V ′ |, which is equal to | V |, and any basis B of R(G,α) induces a basis

B
′
of R(G′ ,α′ ). Over a principal ideal domain R, the smallest flow - up classes exist over

an arbitrary graph G [55], which forms a module basis for R(G,α) and hence will induce

module basis for R(G′ ,α′ ), for an isomorphic graph G
′
.

We now consider the generalized spline modules R(D3,3,α) and R(D,α′ ) for the diamond graph

D3,3 and its isomorphic graph D (Fig 6.4(a),6.4(b)), over a principal ideal domain R. If

F1 = (1, 1, 1, 1),F2 = (0, g2, g3, g4),F3 = (0, 0, g3, g4),F4 = (0, 0, 0, g4) forms a flow-up basis

for R(D3,3,α), the smallest leading entries g2,g3 and g4 of F2,F3,and F4 can be calculated

by using the zero trails of the vertices v2,v3 and v4 respectively ,as in [8].

Since the zero trails of the vertices are invariant under the graph isomorphism, the basis

{F1, F2, F3, F4} of R(D3,3,α) will generate the basis {F ′
1, F

′
2, F

′
3, F

′
4} of R(D,α′ ) as QD3,3 is

equal to QD by lemma 3.15[8].
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Fig. 6.4: a)Diamond graph D3,3 and b)Isomorphic Graph D

Next, we give the basis criterion for generalized spline modules on a set of isomorphic

graphs, over any GCD domain R.

• Theorem

Let {G1, G2, . . . , Gk} be a set of isomorphic graphs. Then the basis criterion for

generalized spline modules on each of these graphs, if exists, is same over any GCD

domain.

Proof From the definition of isomorphic graphs, each graph in the set {G1, G2, . . .

, Gk} contains the same number of vertices connected in the same way. Therefore,

from the definition of zero trail [Refer Chapter 2] of a particular vertex in Gi, for

any i will be equal to the zero trail of the corresponding vertices in Gj, for all j.

Hence, we have the set of smallest leading entries of all the flow-up splines in the
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graph Gi to be equal to the set of smallest leading entries of the flow up splines in

the graphs Gj, for all j. From the definition of QG , if the set of smallest leading

entries of the flow-up splines for R(Gi,αi) are equal to the set of smallest leading

entries of the flow-up splines R(Gj ,αj), for all j, QG will also be same for both the

graphs. We conclude that the basis criterion for all the isomorphic graphs is same

over any GCD domain.
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Fig. 6.5: (a)Cycle graph C5 (b)Isomorphic graph C ′
5

Considering Fig 6.5(a),6.5(b),we have two graphs, the cycle graph C5 and it’s

isomorphic graph C
′
5.Since the zero trails of the vertices of both the graphs are

same,they have same QG,defined as, QG =
(l1l2l3l4l5)

(l1, l2, l3, l4, l5)
, as calculated using the

zero trails.

From the basis criteria,it follows that the set {F1, F2, F3, F4, F5} ∈ R(C5,α) forms a

basis if and only if | F1F2F3F4F5 |= rQC5 , where r ∈ R is a unit[8]. Since, C
′
5 is iso-

morphic to C5, QC5 will be the same as QC
′
5
, and hence the images {F ′

1, F
′
2, F

′
3, F

′
4, F

′
5}

will form a basis for R(C
′
5,α

′ ) if and only if | F ′
1F

′
2F

′
3F

′
4F

′
5 |= rQC

′
5
,where r ∈ R.Thus

the isomorphic graphs,C5 and C
′
5,have same basis criteria over GCD domain R.

It was shown in [8], the generalized spline modules over trees are always free with the

rank equal to the number of vertices, for any commutative ring R and a flow up basis

exists for all such modules. Isomorphic trees are structurally identical and in turn

induce isomorphism between the respective generalized spline modules. Thus, if two

trees are isomorphic, then a correspondence is induced between the generating sets

of their generalized spline modules and between the underlying database structures

represented by them can be considered similar. We now use the zero-trail method

to construct the flow-up basis for an ordered rooted tree. But before that, we first

introduce level wise indexing of the nodes as follows: The root of the tree is indexed

as “0”. All the nodes in level one are the children of the root “0”. Let there be n0

vertices in level one, which are indexed as 01, 02, . . . , 0n0 from left to right. Thus,

the vertices in each level are ordered from left to right. Again, let the vertices

01, 02, . . . , 0n0 have n01, n02, . . . , n0n0 children respectively. We index the children
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of the vertex “01” as 011, 012, . . . , 01n01 from left to right, the children of vertex

“02” as 021, 022, . . . , 02n02 from left to right and so on. Then the children of the

node “0n0” will be indexed as 0n01, 0n02, . . . , 0n0n0n0 from left to right. Fig. 6.3

represents the level-wise ordered indexing of the nodes of an arbitrary tree.
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Fig. 6.6: Level-wise ordered indexing of the nodes of an arbitrary tree.

The edge label of the edge (u, v) can be represented as lv ∈ R, where lvis the

generator of the ideal (lv) associated with the edge (u, v) and v is a child of the

vertex u. Thus, the edge ideal associated with the edge (0, 01) can be represented

by the element l01 (Refer Fig.6.6) and the remaining edge labels can be represented

in the same manner.

We see the example of star tree and ordered rooted tree with 7 vertices which are very

important trees in database structures. Also, a similar algorithm can be generated

for caterpillar, super caterpillar and lobster trees. The vertices of all these graphs

are indexed as described before, starting from the root vertex indexed as “0”.

First, we define the flow up classes of generalized splines for the star graph with six

vertices(Fig. 6.7), using the zero trail method.

• Star Tree with 6 vertices
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Fig. 6.7: Star Tree with 6 vertices

The indexing of the vertices is done level-wise as discussed before. The root vertex

is indexed as 0, and all the five leaf vertices in level 1 are indexed as 01(1), 02(1),



Chapter 6. Basis Criteria for Generalized Spline Modules on Some Isomorphic Graphs93

03(1), 04(1) and 05(1) respectively. Thus, any generalized spline over this graph can

be expressed as

P =



p
(1)
05

p
(1)
04

p
(1)
03

p
(1)
02

p
(1)
01

p0


Here pv ∈ R is the vertex label corresponding to the vth vertex in the graph. The

flow-up classes for this graph {F 0, F 01(1), F 02(1), F 03(1), F 04(1), F 05(1)} are obtained

as follows
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0

l
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0

0

0

0
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


Clearly, each class in the set {F 0, F 01(1), F 02(1), F 03(1), F 04(1), F 05(1) satisfies the GKM

condition and hence is a generalized spline over the star graph with six vertices.

Also, we can see that the determinant

| F 0 F 01(1) F 02(1) F 03(1) F 04(1) F 05(1) | = l
(1)
01 l

(1)
02 l

(1)
03 l

(1)
04 l

(1)
05 = QG , where G is the

star graph with six vertices in this case.

Hence, we conclude from theorem [2.14] in [8] that the set

{F 0 F 01(1) F 02(1) F 03(1) F 04(1) F 05(1) } forms a basis for the generalized spline module

R(G,α) for this graph.

Next, we generalize the above method to arbitrary rooted tree graphs in which the

vertices are ordered from left to right at all levels. Consider the ordered rooted tree

with seven vertices as shown in Fig.6.8.

The root vertex is indexed as 0. There are two vertices in level 1, which are indexed

as 01(1) and 02(1) , ordered from left to right. The four leaf vertices are indexed

as 011(2), 012(2) (children of vertex 01(1)) and 021(2), 022(2)(children of vertex

02(1)),with the left to right ordering.

Any generalized spline over this graph can be expressed as
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Fig. 6.8: Ordered rooted tree with 7 vertices

P =


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Using the zero trail method, we get the flow up classes of generalized splines for this

graph as {F 0, F 01(1), F 02(1), F 011(2), F 012(2), F 021(2), F 022(2)} which is equal to
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We see that the determinant of the matrix

| F 0F 01(1)F 02(1)F 011(2)F 012(2)F 021(2)F 022(2) | = l
(1)
01 l

(1)
02 l

(2)
011l

(2)
012l

(2)
021l

(2)
022 = QG , for the

graph G.

Thus, the set of generalized splines {F 0F 01(1)F 02(1)F 011(2)F 012(2)F 021(2)F 022(2)} forms

a basis for the module R(G,α).

The algorithm for writing down the flow up basis for an arbitrary tree which is

rooted and it’s vertices at level are ordered from left to right is as follows

– All entries for the flow up basis element F 0 are one.

– Let there be n vertices in level 1, indexed as 01(1), 02(1) ,. . ., 0n(1). The ordering

of these vertices are taken from left to right. Then the corresponding elements
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of flow up basis are F 01(1) ,F 02(1) ,. . ., F 0n(1)
, where F 0i(1) for 1 ≤ i ≤ n is

constructed by taking F 0i(1)

0i = F 0i(1)

0i1 = F 0i(1)

0i2 = . . . = F 0i(1)

0ini
=l

(1)
0i , and all

other entries as zero. Here F 0i(1)

v denotes the vertex label of the vertex v in the

generalized spline F 0i(1) and 0i1, 0i2, . . . , 0ini, are the children of the vertex

0i. This construction ensures that the GKM conditions are satisfied by all the

vertex labels of the spline F 0i(1) .

– Similarly, the basis elements of the flow up basis corresponding to the children

of the higher level vertices are constructed till we reach the leaf vertices. The

leaf vertices will have only one non zero entry equal to the edge label of their

parent vertices and zero otherwise.

It can be easily seen that the determinant of the matrix whose columns are the splines

F 0,F 01(1) ,F 02(1) ,. . . is equal to the product of the edge labels and hence equal to

QG, for the tree graph G. Thus the set of generalized splines {F 0, F 01(1) , F 02(1) , . . .}
forms a flow up basis for G.

It can be seen that the level wise ordering of the vertices introduced in this paper,

ensures that an algorithm can be developed for writing the flow up basis for any

ordered rooted tree with a finite number of vertices.

6.4 Conclusions

We showed that generalized spline modules on isomorphic graphs over PID have same

flow-up bases. We extended this result to generalized spline modules on isomorphic trees

over any GCD domain and constructed Flow up basis for generalized spline modules on a

star graph. An algorithm is developed for indexing the vertices of ordered rooted trees

which helps us to generalize the method of constructing flow-up basis for generalized

spline modules over any ordered rooted tree and hence over a family of isomorphic trees

over a GCD domain. As rooted tree structures find vast applications in network analysis,

manipulating hierarchical data, information searching, router algorithms, multi-stage

decision-making and spread of infectious diseases, our study adds newer dimension to the

existing knowledge and opens areas of further investigations.


