
Chapter 7

Research Summary and Conclusions

7.1 Research Statement

An edge labeled graph is a graph G whose edges are labeled with non-zero ideals of a

commutative ring R. A Generalized Spline on an edge labeled graph G is a vertex labeling

of G by elements of the ring R, such that the difference between any two adjacent vertex

labels belongs to the ideal corresponding to the edge joining both the vertices. The set of

generalized splines forms a sub ring of the product ring R|V |, with respect to the operations

of coordinate-wise addition and multiplication and also becomes a module over the ring

R.This ring which is also a module is known as the generalized spline ring RG, defined on

the edge labeled graph G, for the commutative ring R. We have considered particular

graphs such as complete graphs, complete bipartite graphs and hypercubes, labeling the

edges with the non-zero ideals of an integral domain R and have identified the generalized

spline ring RG for these graphs. Also, general algorithms have been developed to find

these splines for the above mentioned graphs, for any number of vertices and Python code

has been written for finding these splines.We also determine conditions for a subset of

R(G,α) to form a basis for the spline module R(G,α), for some classes of graphs such as

Dutch Windmill graph and it’s special cases such as friendship graph,butterfly graph over

GCD domain.We find a generating set of flow-up classes for wheel graphs over the ring

Z/pkZ, where p is prime. Also we classify splines on cycles and wheel graphs over the ring

Z/mZ when m has few prime factors and find a generating set of flow-up classes on these

graphs over Z/mZ. We also determine conditions for a subset of R(G,α) to form a basis of

R(G,α) for some classes of graphs.We have studied basis criteria for generalized splines on

some isomorphic graphs over GCD domain and constructed flow-up basis for generalized

spline modules on an arbitrary tree.
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7.2 Introduction

As Spline thoery started with Schoenberg’s work in 1940’s, he is considered as the

pioneer of splines, which has now become a vast field in mathematics, finding extensive

applications.To begin with, we give the classical definition of splines.

Let P be a d–dimensional polyhedral complex. A Cr–spline on P is a piecewise polynomial

function (a polynomial is assigned to each d-dimensional cell or face σ of P ), such that

two polynomials supported on d-faces which share a common (d-1)-face τ , meet with order

of smoothness r along the common face.The set of splines of degree at most k and are of

smoothness of order r is denoted by Cr
k(P ), is a vector space[17].A Cr-spline is represented

as a vector of polynomials (f1, f2, . . . , fn), where each fi is a polynomial of degree atmost

k. Multiplying the vector by a fixed polynomial f gives (f.f1, f.f2, . . . , f.fn), which is

again a Cr-spline. This means that the set of splines is a module over the polynomial

ring as shown in [17]. For two d-cells σ1 and σ2 sharing a common (d-1)–face τ , let lτ

be a nonzero linear form vanishing on τ . Billera and Rose [17] have shown that a pair

of polynomials fi supported on σi, i = 1, 2 meet with smoothness of order r along τ iff

lr+1
τ |f1 − f2.

As an example, we see a 2-dimensional polyhedral complex which is a planar simplicial

complex P and is the star of a single interior vertex v0, the origin [Fig.7.1].The adjacent

triangles or 2-faces meet over common lines, i.e, the 1- dimensional faces.

• Example[17]

Fig. 7.1: Example of a Cr–spline

Begining with the simplex [Fig.7.1]in the first quadrant and moving clockwise, the

piecewise polynomials defined on the triangles are f1, f2, f3, f4.To obtain a global

Cr function, we require element (f1, f2, f3, f4) to satisfy the conditions, a1.y
r+1 =

f1 − f2; a2.(x − y)r+1 = f2 − f3; a3.(x + y)r+1 = f3 − f4; a4.x
r+1 = f4 − f1. It can
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easily be verified that the continuity conditions are satisfied at every edge sharing

the boundary of two simplexes[17].

Initially, piecewise polynomials were studied for curve-fitting and in fact, the word

spline was used for particular C2 interpolatory piecewise cubic polynomials. Later

the definition was broadened to include any piecewise polynomial functions of higher

degree, with any order of smoothness conditions imposed on the boundary of two

d-faces. Besides the applications in curve-fitting, splines found wide applications in

the finite element method to estimate solutions of ordinary and partial differential

equations. Subsequently, applied mathematicians and engineers working in the

areas of curve fitting, finite element methods, computer-aided geometric design,

signal processing, mathematical modelling, computer-aided design, computer-aided

manufacturing, and circuits and systems started using multivariate splines extensively.

In fact, Spline functions are most successful approximating functions for practical

purposes till today. In regression models, regression splines have several benefits

when compared to linear and polynomial regressions. Unlike polynomials, which

must use a high degree polynomial to produce flexible fits, splines introduce flexibility

by increasing the number of knots but keep the degree fixed.

By their definition, the study of spline functions involves both algebra and geometry,

and the smoothness conditions also require an understanding of analysis. In depth

understanding of splines and their applications involved an interplay between the

underlying combinatorics, geometry of the subdivision and the algebraic/analytic

properties of the resulting set of functions. This interplay became domain of active

research with the pioneering works of P. Alfeld , P. Alfeld and L.L Schumaker , L.J

Billera , L. J. Billera and L. L. Rose [[17],[18],[93]].

The chronology of the study is as follows

Strang [18] conjectured a formula for the dimension of C1
d(∆) for a d-dimensional

complex ∆ as a vectorspace , which was proved by Morgan and Scott [83], for

d ≥ 5, by construction of a locally supported basis. Alfeld-Schumaker [5] extended

Strang’s formula to a formula for dimdC
r
d(∆) for d ≥ 4r + 1, which was further

improved in several studies. Billera [17] introduced techniques from homological

and commutative algebra to the study of splines, giving an algebraic approach to

computing the dimension of Cr
d(∆). Subsequently, this algebraic approach has been

refined by a number of authors in their research studies who worked on identifying

the dimension and bases for the vector space Cr
k(P ) of splines[41]. Gilbert, Polster,

and Tymoczko [55] generalized the notion of splines, building them on the dual

graphs of the polytopes and it was shown in [18] that the two constructions (on
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polytopes and their duals) are equivalent. Later they constructed these splines over

arbitrary edge labeled graphs G and termed these as generalized splines.

The definition of an edge labeled graph and generalized spline rings as defined in

[55] are as follows

• Definition[55]

Let G = (V,E) be a graph. Let R be an arbitrary commutative ring with identity

which is also an integral domain and let S denote the set of all non-zero ideals of R.

Let a function α : E −→ S be an edge labeling function defined on G,where α labels

each edge in graph G by the ideals of the ring R. Then the graph G with function

α is called an edge labeled graph which is denoted by G = (V, α).

The definition of generalized splines over an arbitrary graph G is as follows

• Definition [55]

Let G = (V,E) be a graph of order n. Let R be a commutative ring and let I

denote the set of all ideals of R. Let α : E −→ I be an edge labeling. A generalized

spline of (G,α) is a vertex labeling F : V −→ R such that for each edge uv,

F (u)− F (v) ∈ α(uv) where F (u) ∈ R for each vertex in u in V .This condition is

known as edge condition or GKM condition satisfied by the generalized splines over

the edges of the graph G.The set of splines defined over G is denoted by R(G,α).

Each element of RG,α is called a generalized spline. If the edge labeling is clear, it is

denoted as RG.

The following figures (as discussed in [55]) are two examples of generalized splines

RC4 and RK4 , defined on the 4-cycle C4 and the complete graph K4.
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Fig. 7.2: Generalized spline on C4
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Fig. 7.3: Generalized spline on K4

Algebraically, the set of splines over a subdivision of domains was seen to be a

subring of the product ring R × R × . . . R (n copies), where R was the ring of

polynomials and n denoted number of subdivisions of the domain. Also, it was

observed that the above spline ring was a module over the ring of polynomials[55].

Identifying the dimension and suitable bases for the free spline modules became an

active area of research for mathematicians, still remaining far from being completely

understood.



Research Summary 101

As discussed in the previous paragraph, Simcha Gilbert, Shira Polster and Julianna

Tymoczko [55], expanded the family of objects on which these splines were defined

to arbitrary graphs, which they called the generalized splines denoted by R(G,α).

They have shown that R(G,α) has a ring and module structure over the ring R, for

an arbitrary graph G [55] and have shown that there exists a minimum generating

set which functions like a basis for RG over an integral domain R. In fact, over an

integral domain the spline module contains a free sub-module of rank at least the

number of vertices in G and over a PID, the spline module is always free with rank

exactly equal to the number of vertices in G. Handschy, Melmick and Reinders have

studied the generalized spline modules on cycle graphs over the ring of integers [63].

They have shown the existence of flow-up basis for the generalized spline modules

on cycle graphs, thus proving that these spline modules are free. Bowden and

Tymoczko [21] considered the module of generalized splines over the quotient ring ,

Z/mZ where m is an integer, which is not an integral domain . It was shown that

finite generalized modules are generally not free, but the minimum generating sets

function like bases and it was shown in [21] that over the quotient ring Z/mZ, these
minimum generating sets are smaller than expected. As the rank of the Z-module

of splines is defined to be the number of elements of a minimum generating set,it

was concluded that these modules can have any rank r with 1 ≤ r ≤ n.

Nealy Bowden, Sarah Hagen and Stephanie Reinders [20] proved that flow-up

classes with smallest leading entries form a module basis for R(G,α), where R is an

integral domain. In [50], Gjoni studied integer generalized splines on cycles and gave

basis criteria for Z(Cn,α) via determinant of flow-up classes. Emmet Reza Mahdavi

[74] characterized integer generalized splines on diamond graph and developed a

determinantal criterion for a given set of splines to form a basis. Also in [7], Selma

Altinok and Samet Sarioglan proved the existence of flow-up bases for generalized

spline modules on arbitrary graphs over principal ideal domains. They introduced

a method to determine the smallest leading entries of flow-up classes on arbitrary

graph over a principal ideal domain by using zero trails and gave an algorithm to

determine flow-up classes on arbitrary ordered cycles. In [8], Selma Altinok and

Samet Sarioglan generalized that work and gave basis criteria for diamond graphs

and trees over any GCD domain.

7.3 Rationale of the Study

As discussed earlier, Gilbert et.al[55] have shown that the set of splines over an arbitrary

graph G has a ring as well as module structure over the base ring R. They completely
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described the generalized spline modules on trees, while leaving open the investigation on

cycles[55]. They have shown that when R is a domain then the rank of the module R(G,α)

is equal to | V | , number of vertices in G.

We have extended the study further in our research and addressed the open questions posed

by Gilbert, Polster and Tymoczko in [55]. We have constructed nontrivial generalized

splines for the special cases of G, where G is a Complete graph, Complete Bipartite graph

with any number of vertices and Hypercubes. We have developed a general algorithm

to express the ring of generalized splines for hypercubes of any dimension , taking into

account the bipartite nature and Hamiltonian property of the graph . Also, Python codes

were developed which calculated the elements of the generalized spline ring , for complete

graphs and complete bipartite graphs.

Bowden and Tymoczko[21] found an algorithm for writing the generating set which acts

as a basis for the generalized spline modules for cycle graphs, taking the base ring as the

quotient ring of integers modulo m .We have extended their method to a generating set

for the wheel graphs which is viewed as a graph extention to the cycle graph.

Selma Altinok and Samet Sarioglan [8] have given basis criteria for graphs obtained by

joining cycles, diamond graphs and trees together along common cut vertices.Based on this

result [8], we have obtained the basis criteria for R(G,α) on edge labeled Dutch windmill

graph and special cases of Dutch windmill graph such as Friendship graph and Butterfly

graph which have common cut vertices with cycle graph Cn and triangles respectively,

over any GCD domain, by using determinantal techniques and flow-up bases.

We have also studied basis criteria for generalized splines on some isomorphic graphs over

GCD domain and constructed flow-up basis for generalized spline modules on arbitrary

ordered rooted trees.

Isomorphism in trees establish structural similarities between them, thereby finding

variety of applications in diverse disciplines such as social sciences, science and technology,

organisational structures etc. Subtree Isomorphisms are used where pattern matching

plays a significant role in searching the identical problems which can be compared. We

have shown that isomorphic graphs have the same flow up basis over any GCD domain.

Further, we have used the zero trail method to construct the flow up basis for some tree

graphs and in general, developed an algorithm for indexing the vertices of an ordered

rooted tree graph.This helps us in constructing a flow-up basis for any ordered rooted

tree graph and its isomorphic graphs.

Thus we have studied ring and module of generalized splines over a variety of graphs consid-

ering base rings which are either GCD domains,integral domains or quotient rings.However
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we have also realized that our study has generated several areas which can be taken up

for further study and finding applications of the algorithms for the real world problems.

7.4 Objectives of the study

• To identify the generalized spline ring R(G,α) for G to be a graph in an important

family of graphs such as wheel graphs, complete graphs, complete bipartite graph

and hypercubes. All these graphs are extensively used in network theory.

• To develop algorithms and software codes to write down the elements of the gen-

eralized spline rings defined over the above mentioned graphs for any number of

vertices.

• To show the existence of flow up basis and construct these basis for the generalized

spline modules over the graphs which are joins of cycle graphs such as the Dutch

Windmill graphs and their special cases such as the butterfly graphs and friendship

graphs.

• To find the minimum generating sets over the quotient rings Z/mZ and Z/pkZ,
where m = m1m2 . . .mr and each mi and p is prime, for the wheel graph, which is

an extension to the cycle graph.

• To investigate whether ring automorphism together with graph isomorphism es-

tablishes module isomorphism between the modules of generalized splines over

isomorphic graphs.

• To investigate whether a set of generalized splines over a graph, satisfying the

basis criterion defined over GCD domain is equivalent to the corresponding set of

generalized splines over isomorphic graphs. Indexing the vertices of an arbitrary

ordered rooted tree graph in a way that an algorithm for writing down the flow up

basis satisfying the basis criterion can be obtained.

7.5 Preliminaries

In this section we give the definitions and the results used in our work.

The definition of flow-up classes and constant flow-up splines are as follows:
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• Definition [8]

Let (G, α) be an edge labeled graph with V (G) ={v1, v2,. . .,vn} and E(G) = {e1,
e2,. . ., em}.Let 1 ≤ i ≤ n. The set of all generalized splines F : V −→ R where

F (vj) = 0 if j < i and F (vi) ̸= 0 is called a flow-up class and is denoted by F(i).

Thus a generalized spline in F(i) has i − 1 leading zeros and the class {F(i)} is a

submodule of R(G,α).

• Definition[21]

Given a graph G with an ordered set of vertices V = (v1, v2, . . . , vn), a flow-up spline

for a vertex vi is a spline fi for which (fi)vi= 0, whenever k < i.A constant flow-up

spline in Z/mZ is a flow-up spline p for which there exists an element ni ∈ Z/mZ
such that piv ∈ {0, ni} for each v ∈ V .i.e,The entries of constant flow-up splines

have at most one possible nonzero value.

The definition of zero trail which is given in [7]is as follows

• Definition [7]

Let G = (V,E) be a graph with an edge labeling α. Let u, v ∈ V . A u− v trail in

G is an alternating sequence T = ( u = vi0 , ei1 , vi1 , . . . , eik , vik = v) of vertices and

edges such that eij = vi(j−1)vij and all the edges in T are distinct. If α(eij) = lij,

then the trail T is denoted by li1 , li2 ,. . .,lik . If vik = 0, then T is called a zero

trail and is denoted by T (u,0). Also gcd and lcm of { li1 , li2 ,. . ., lik} are denoted by

( T ) = ( li1 , li2 , . . . , lik) and [ T ] = [ li1 , li2 , . . . , lik ] respectively.

We discuss the example in [7] to explain the zero trails of a vertex.

• Example[7]

Let (G1, α) be the edge labeled graph (Fig 7.4) which is given as in [7] and

(0, 0, f3, f4, f5) ∈ F3 where F3 is the flow-up class as discussed before. The zero trails

of v3 are shown as red and blue lines in Fig.7.4.

The zero trails of v3 are listed below p
(3,0)
1 = l7l4, p

(3,0)
2 = l7l5l3, p

(3,0)
3 = l7l5l2, p

(3,0)
4 =

l6l3, p
(3,0)
5 = l6l2, p

(3,0)
6 = l6l5l4

The set of all greatest common divisors of zero trails of v3 is given as {(p(3,0))} =

{(l7, l4), (l7, l5, l3), (l7, l5, l2), (l6, l3), (l6, l2), (l6, l5, l4)}.



Research Summary 105

Fig. 7.4: Zero Trails

The following is definition of the matrix representation of set of flow-up splines.

• Definition [8]

Let (G, α) be an edge labeled graph with V (G) = {v1, v2, . . . , vn} and A = {F1, F2,

. . .,Fk} ⊂ R(G,α). Let Fi( vj) = fij . Then the n × k matrix
f1n f2n . . . fkn
...

... . . .
...

f11 f21 . . . fk1


is called the matrix representation of A.

The following is the formula of QG for a graph G, used in finding basis criteria for

generalized spline modules on cycle graph and diamond graph etc, which is given in

[8].

• Definition [8]

Let (G,α) be an edge labeled graph with k vertices. Fix a vertex vi on (G,α) with

i ≥ 2. Label all vertices vj with j < i by zero. By using the notations in [8], we

define QG as

QG =
∏k

i=2 [ {( p(i,0)t ) } | t = 1,...,mi] ,where p
(i,0)
t are zero trails of vi and mi is the

number of the zero trails of vi.

We state the theorems proved in [8], which are used for obtaining basis criterion

for a set of flow-up classes to become a basis for certain classes of graphs we have

studied.

The following lemma gives formula QG for cycle graph Cn.
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• Lemma[8]

Let (Cn, α) be an edge labeled n-cycle. Then QCn =
l1l2 . . . ln

(l1, l2, . . . , ln)
where l1,l2,. . . ,ln

represent the edge labels of cycle graph.

Since a tree graph is a graph without cycles,the following lemma gives formula QG

for G to be a tree.

• Lemma [8]

Let G be a tree with n vertices and k edges. Then QG = l1 . . . lk where l1, . . . , lk are

edge labels of G .

The following result gives the basis criteria for cycle graph and tree graph with n

vertices as calculated in [8].

• Theorem [8]

Let (Cn,α) be an edge labeled n-cycle and let {F1, . . . , Fn} ⊂ R(Cn,α). Then

{F1, . . . , Fn} forms a basis for R(Cn,α) if and only if | F1F2 . . . Fn |= r ·QCn , where

r ∈ R is a unit.

The following result which is given as corollary to Theorem 3.26 in [8] generalizes

the basis criterion for join of cycles, diamond graphs and trees along common cut

vertices.

• Corollary [8]

Let {G1, . . . , Gk} be a collection of cycles, diamond graphs and trees and let G be a

graph obtained by joining G1, . . . , Gk together along common vertices which are cut

vertices in G. Then {F1,...,Fn} ⊂ R(G,α) forms a basis for R(G,α) if and only if

| F1 F2 . . .Fn |= r· QG1 . . .QGk
, where r ∈ R is a unit.

We particularly consider the rooted trees because root of a tree represents the “start”

of the data. Another important information assigned to the rooted trees is the

ordering of the children (from left to right). Such a tree is called an ordered rooted

tree.For example, suppose we have a tree with a single parent and two leaf nodes. So

we assign ”()” to the leaves. When we move towards the parent node, we combine

the parentheses of leaves like ”()()” and wrap it in another pair of parentheses like

”(()())” and assign it to the parent. This process continues iteratively until we reach

the root node.We can encode any ordered rooted tree by assigning a string of 0’s

and 1’s, which uniquely determine the tree by using the AHU algorithm. In AHU

algorithm, parenthetical tuples are assigned to all tree vertices. However, these

parenthetical tuples have no ordering. Replacing “(“ with “1” and “)” with “0”,

the parenthetical names are converted into canonical names, which can be sorted

lexicographically.



Research Summary 107

We have seen that if two graphs are isomorphic then the zero trails of their vertices

are identical.As a result we have concluded that isomorphic graphs have equivalent

bases and equivalent basis criteria whenever generalized modules on these graphs are

free or generating sets exist.The result does not have strong implications for arbitrary

graphs over GCD domains as no polynomial-time algorithm exists for checking the

isomorphism between graphs in general.however,we have the AHU algorithm for

tree graph isomorphisms, our results are generalized over ordered rooted tree graphs

which form a very important class of graphs in Computer Network Theory.

We now discuss the AHU algorithm as in [25], for the isomorphism in trees.

• AHU Algorithm[25]

This Algorithm determines tree isomorphism in time O(| V |) by associating a tuple

with each vertex of a tree that describes the complete history of its descendants.

The AHU [25] algorithm is a serialization technique for representing the vertices

of a tree as unique string and is able to capture a complete history of a tree’s

degree spectrum and structure, ensuring a deterministic method of checking tree

isomorphisms.In this algorithm, leaf nodes are assigned with a parenthesis ”()”.

Every time we move upwards, we combine, sort and wrap the parentheses.We can’t

process a node until we have processed all its children.

A (( ) (( ) ( )) ( ))

F G

D( )
C (( ) ( ))

B

E

(( ))

( ) ( ) ( )

Fig. 7.5: Encoded ordered rooted tree using the AHU Algorithm

Next we give the definition of isomorphism in ordered rooted trees.

• Definition[1]

Two ordered rooted trees are isomorphic if there exists an isomorphism of rooted

trees, such that it preserves the order of children of every vertex.

Gilbert [55] has shown that the set of generalized splines R(G,α) has a ring as well as a

module structure over the base ring R. Also, the following definition and proposition

given by him shows that isomorphism in graphs together with ring automorphism

induces isomorphism between the ring of generalized splines.

Isomorphism of edge labeled graph is as follows
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• Definition [55]

Let (G,α) and (G
′
, α′) be edge labeled graphs and R be a commutative ring. A

homomorphism of edge labeled graphs ϕ : (G,α) −→ (G
′
, α

′
) is a graph homomor-

phism ϕ1 : G −→ G
′
together with a ring automorphism ϕ2 : R −→ R, so that

for each edge e ∈ EG, we have ϕ2(α(e)) = α
′
(ϕ1(e)) i.e,the following diagram is

commutative.

E
G

E
G’

Φ1

Φ2

I I

α α’

An isomorphism of edge–labeled graphs is a homomorphism of edge–labeled graphs

whose underlying graph homomorphism is an isomorphism.

• Proposition[55]

If ϕ : (G,α) −→ (G
′
, α

′
) is an isomorphism of edge–labeled graphs then ϕ induces

an isomorphism of the corresponding rings of generalized splines ϕ∗ : RG −→ RG′

defined as ϕ∗(p)ϕ1(u)
= ϕ2(pu) for each u ∈ VG. Using the above proposition, we

have shown in section 5, that isomorphic graphs together with ring automorphism

also induce module isomorphism ϕ∗ between R(G,α)
∼= R(G′,α′ ).

With these preliminaries, we discuss the results we have obtained in this study.

7.6 Results and Discussions

We discuss the four major results of this research study starting with extension of work

done by Nealy Bowden and Julianna Tymoczko on cycles [21] to classify splines on wheel

graphs.

• Splines on Wheel Graphs over the quotient ring Z/pkZ

Referring to the results given by Nealy Bowden and Julianna Tymoczko [21],we

applied the study to wheel graphs which are extension to cycle graphs. We have

proved the following theorem which gives a generating set in matrix form for the

generalized spline module RWn+1 over quotient ring Z/mZ.

Considering the Wheel graph Wn+1 whose edges are labeled by some powers of

a ∈ R,we have
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Fig. 7.6: Wheel Graph

• Theorem

Let a be a zero divisor in Z/mZ. Suppose all of the edges of Wn+1 are labeled with

powers of a and the set of edge labels is (ak1 , ak2 , . . . , akn). Without loss of generality

assume that ak1 is the minimal power in the set and that ak1 is the label on the

edges ln, ln+1, ln+2, . . . , l2n. Then the following matrix contains all generating n+ 1

splines on Wn+1.

B(Rwn+1) =



1 l1 . . . li . . . ln−1 ln ln

1 l1 . . . li . . . ln−1 ln 0

1 l1 . . . li . . . ln−1 0 0
...

...
...

...
... 0

...
...

1 l1 . . . 0 . . .
...

... 0

1 0 . . . 0 . . . 0 0 0


Here li is equal to the edge label akj where 1 ≤ j ≤ n − 1. As a corollary to the

above result,we have

• Corollary

Let Wn+1 be a wheel graph with n+ 1 vertices, p be a prime number and k be a

positive integer.Then the splines on RWn+1 over Z/pkZ are generated by the minimum

generating set B in the above result.

Now we give following theorem which gives a flow-up generating set for the generalized

splines on Cn over the ring Z/mZ .
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• Theorem

Let Cn be a cycle and R be ring Z/mZ where m = m1 m2 and m1,m2 are prime

factors of m.Let the edges of Cn be labeled by prime factors of m such that each

prime factor of m appears at least once in the edge labeling of Cn. Then the following

set is a flow-up generating set for RCn .

B(RCn) =





1

1

1
...

1

1





ln−1ln

ln−2ln−1

...

l2l3

l1l2

0





ln−1ln
...

l3l4

l2l3

0

0


. . .



ln−1ln

0
...

0

0

0




• Remark

When m has only two prime factors the generating set B may not be minimum. It

will lose a rank whenever two adjacent edges of Cn are labeled with distinct primes

m1 and m2.We observe that when m has more than 2 prime factors, the generating

set doesn’t loose rank since every vertex in cycles is incident to only two edges.

We also give following theorem which gives generating set for the splines on Wn+1

over the base ring Z/mZ.

• Theorem

Let Wn+1 be a cycle and R be a ring Z/mZ where m = m1 m2 and m1,m2 are

primes. Let the edges of Wn+1 be labeled by either by m1 or m2 such that both m1

and m2 appear as edge labels atleast once. Then the following set is a generating

set for RWn+1 over the base ring Z/mZ.

B(RWn+1) =





1

1

1
...

1

1





ln+1ln+2 . . . l2n

ln−2lnl2n
...

l2l3ln+3

l1l2ln+2

0





ln+1ln+2 . . . l2n

ln−2lnl2n
...

l2l3ln+3

0

0


. . .



ln+1ln+2 . . . l2n

0
...

0

0

0




The following theorem completely characterise the situation, when the generating

set of the module RWn+1 will be minimum.

• Theorem

Let Wn+1 be a wheel graph, with vertices v1, v2, . . . , vn+1 and edges l1, l2, . . . , l2n
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and m = m1m2 . . .mr where m1,m2, . . . ,mr are primes. Let each edge of the wheel

graph be labeled by the prime factors of m. Then, we can get the generating set

B of RWn+1 consisting of flow-up splines by labeling the vertices of Wn+1 with the

product of edge labels of edges incident on them . The above set will be minimum

whenever the number of prime factors of m is greater than n, i.e, the number of

vertices in the cycle graph Cn.

The following is second major result of our research study.

• An Algorithm for Generating Generalized Splines on graphs such as

Complete Graphs,Complete Bipartite Graphs and Hypercubes In this

section of our work, we have extended the work done by Simcha Gilbert, Shira

Polster, and Julianna Tymoczko [55] to identify and construct ring of generalized

splines R(G,α) for some important family of graphs like complete graphs, complete

bipartite graphs and Hypercubes.We have found algorithms for generating generalized

spline rings on these graphs.

• Generalized splines for Complete graphs,Kn, n ≥ 3

We have used Theorem 3.8 from [55] to identify the ring RG, for the complete graph

Kn, for n ≥ 3.

Fig. 7.7: Generalized spline on K3

First we discuss nontrivial generalized splines for complete graph K3 as given in

[55]. Here the edges (v1, v2), (v2, v3) and (v3, v1) of the graph K3 are labeled with

the non-zero ideals A(1, 2), A(2, 3) and A(3, 1) respectively of the ring R, when R is

an integral domain.
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It follows from Theorem 3.8 in [55], a generalized spline pK3 on the complete graph

K3 is

pK3 =

 0

α(1, 2)α(1, 3)

(α(1, 2) + α(2, 3))α(1, 3)

 =

pv1pv2

pv3


Here α(i, j) represents generator of the edge ideal A(i, j). It is seen that pK3 satisfies

the edge conditions on K3, because if the vertices vi and vj are adjacent, then

pvi − pvj ∈ A(i, j),as α(i, j) is a factor of pvi − pvj

Since R is an integral domain and each α(i, j) is not equal to zero, RK3 contains

nontrivial generalized splines. Using the above result, we have generated the

algorithm for developing the generalized spline for the complete graph Kn, for any

n ≥ 4. As discussed in rationale of the study we addressed the open questions given

in [55] to construct generalized splines RKn , for any n ≥ 4, each time adding one

vertex and joining the new vertex to the remaining (n− 1) vertices.

Fig. 7.8: Generalized Spline on K4

We add the vertex v4 to K3 and join the new vertex v4 with the vertices v1,v2,v3 of

K3 . The new edges are labeled with the non-zero ideals A(4, 1), A(4, 2), A(4, 3) of

integral domain R and α(4, 1), α(4, 2), α(4, 3) are the generators of the respective

edge ideals. It can be seen that every vertex label for pK3 ∈ RK3 is multiplied

by the factor α(4, 1)α(4, 2)α(4, 3) to get the corresponding vertex labels for the

spline pK4 ∈ RK4 , where RK4 denotes the ring of all generalised splines for the edge

labeled graph (K4, α). It is easily verified that if the new vertex v4 is labeled with

pv4 =α(4, 1)α(4, 2)α(4, 3), then pK4 becomes a generalized spline for RK4 since the

edge conditions are satisfied for the adjacent vertices in K4. So we have
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pK4 =


0

α(1, 2)α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩

⟨α(4, 1)α(4, 2)α(4, 3)⟩

 =


pv1

pv2

pv3

pv4


pv1 − pv2 ∈ A(1, 2), since α(1, 2) ∈ A(1, 2) is a factor of pv1 − pv2 . Similarly the edge

conditions will be satisfied for other edges also.

Here pv4 = α(4, 1)α(4, 2)α(4, 3) is non-zero because R is an integral domain. Also

since K3 is a sub-graph of K4 and RK3 contains nontrivial generalized splines ”RK4”

also contains nontrivial generalized splines.

We give the following algorithm for writing the generalized spline for complete graph

Kn , for any n ≥ 4.

• Theorem

We obtain the complete graph Kn by adding the nth vertex vn and the edges

(vn, v1), (vn, v2), . . . , (vn, vn−1) to the complete graph Kn−1, labeling the new edges

with the ideals A(n, 1), A(n, 2), . . . , A(n, n−1) in the ring R, which are generated by

the elements α(n, 1), α(n, 2), . . . , α(n, n− 1).Then the generalized spline ring RKn

contains the elements of the type

pKn =



0

α(1, 2)α(1, 3)⟨N4⟩ . . . ⟨Nn⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨N4⟩ . . . ⟨Nn⟩

⟨N4⟩ . . . ⟨Nn⟩
⟨N5⟩ . . . ⟨Nn⟩

...

...

...

⟨Nn⟩



=



pv1

pv2

pv3

pv4

pv5
...
...
...

pvn


Here, the notations N4, N5, . . . , Nn are as follows

N4 = α(4,1)α(4,2)α(4,3)

N5 = α(5,1)α(5,2)α(5,3)α(5,4)

...

...

...

Nn = α(n,1)α(n,2). . . α(n, n− 1)
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Here pv1 , pv2 , . . . denote the vertex labels of vertices v1, v2, . . . , vn of the graph Kn.

We give software code for the above algorithm using Python software. Using this

we can obtain generalized spline pKn for Kn , for n ≥ 3. In this code we have used

A(i, j) as the notation for the ideal as well as for the element of the ideal.

• Python code for generalized spline modules on Complete graph Kn The

Python code is given as

1

2 import numpy as np

3

4 K3 = np.array([’0’,"A{1,2}*A{1,3}","(A{1 ,2}+A{2 ,3}*(A{1 ,3})"])

5

6 def generate Kn(n):

7 if n leq 3 :

8 return K3

9

10 else:

11 ans = K3

12

13 for i in range (4,n+1):

14

15 j= np.hstack ([ans ," "])

16

17 symbol_arr = list()

18

19 a = " "

20

21 for k in range (1,i):

22

23 a = a +"A{"+str(i)+","+str(k)+"}"

24

25 ans = [ ]

26

27 for x in j:

28

29 if x! = ’0’:

30

31 ans.append(x+‘*‘+a)

32 else:

33

34 ans.append(x)

35

36 return ans

37

38 generate_Kn ( )

Listing 7.1: Python code for generalized spline module on Complete graph Kn

We have extended the method to develop an algorithm for writing the elements

of the generalized spline ring RKn1,n2
for the complete bipartite graph Kn1,n2 .We

considered the general case of complete bipartite graph , where the vertex sets V1

and V2 contain n1 and n2 vertices respectively.
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• Theorem

Let Kn1,n2 be a complete bipartite graph with vertices partitioned into two disjoint

sets V1 and V2, consisting of n1 and n2 vertices respectively.Then, ordering the

vertices in clockwise sense and using the same notations as before, the following

pKn1,n2
gives a generalized spline for the complete bipartite graph Kn1,n2 .

V1 V2

Vn
2
+n
1

V3

Vn
2

Vn
2
+3

Vn
2
+1Vn

2
+2

Fig. 7.9: Generalized Spline on Complete Bipartite Graph Kn1,n2 .

pKn1,n2
=



0

α(1, 2)⟨N(n2+2)⟩⟨N(n2+3)⟩ . . . ⟨N(n2+n1)⟩
α(1, 3)⟨N(n2+2)⟩⟨N(n2+3)⟩ . . . ⟨N(n2+n1)⟩

...

...

α(1, n2 + 1)⟨N(n2+2)⟩⟨N(n2+3)⟩ . . . ⟨N(n2+n1)⟩
0
...
...

0



=



pv1

pv2

pv3
...
...

pvn2+1

...

...

...

pvn2+n1


where Nn2+i = α(n2 + i, 2) α(n2 + i, 3) . . . α(n2 + i, n2 + 1) ,for i = 2,3,. . . ,n1. We

have also developed the software code for the generalized spline modules on complete

bipartite graph using python software which generates the generalized spline pKn1,n2

for Kn1,n2 , for any value of n1, n2.
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Next, we give an algorithm for writing the generalized spline for the edge labeled

n-dimensional hypercube Qn, for any n.

Before constructing the generalized splines for the n-dimensional hypercube Qn, we

discuss about the Gray code , which was given by Frank Gray in 1947 to prevent the

spurious output from electro-chemical switches. In the present time, they are widely

used for error correction in digital communications. The Gray code is an n-bit code

which is an ordering of the 2n strings of length n over 0, 1, such that every pair of

successive strings differ in exactly one position. For example a 2-bit Gray code is

00, 01, 11, 10 and a 3-bit Gray code is 000, 001, 101, 111, 011, 010,110, 100. These

Gray codes exists for all n [35]. Here we discuss about the n-dimensional hypercube

Qn, which is a regular graph with 2n vertices, where each vertex corresponds to a

binary string of length n [35] . Two vertices labeled by strings x and y are joined by

an edge if x can be obtained from y by changing a single bit. The hypercube for n=

1,2,3,4 are shown in the following figures.

Fig. 7.10: Hypercubes Q1, Q2 and Q3

Interestingly, the existence of one dimensional Gray code is related to a basic property

of the n-dimensional hypercube Qn, which says that for every integer n ≥ 2, Qn has

a Hamiltonian cycle. Here, the term Hamiltonian cycle means a cycle in a graph G

that contains all the vertices exactly once in G [49]. The following figures expresses

the Hamiltonian property and bipartite structure of Q2, Q3 and Q4.
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Fig. 7.11: The graph of hypercube Q4

Fig. 7.12: Hamiltonicity of Hypercubes Q2 and Q3
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Fig. 7.13: Bipartite structure of Hypercubes Q2 and Q3

We define an ordering of the vertices of the hypercube in the same way as they

appear in the Hamiltonian cycle. Thus, we number the vertices 1, 2, 3, . . . , 2n , with

the vertices 2,4,8,. . . expressed as 2, 22, 23, . . . , 2n and call this the Hamiltonian

ordering. This helps us in identifying pattern in which the non-zero vertex labels

appear in the generalized spline for the n-dimensional hypercube. Also, hypercubes

are regular graphs with degree of each vertex equal to n. Another important property

of hypercubes which we have used in the construction of generalized splines is the

bipartite nature of these graphs[35]. This means that the vertex set of hypercube

can be partitioned into two subsets V1 and V2 such that

1. No vertices of either of the subsets V1 and V2 are adjacent to vertices within the

same set.

2. Every vertex in V1 is adjacent to exactly n vertices V2 and vice versa.

We constructed generalized spline for the graph Q2 over R which is a commutative

ring with identity and also an integral domain. The edges of Q2 are labeled with
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Fig. 7.14: The bipartite structure and Hamiltonian path of the hypercube Q4

non-zero ideals of R. The vertices are ordered in the way they appear in Hamiltonian

cycle.

Then it can be easily verified that a generalized spline for Q2 is given by:

pQ2 =


0

α01,00α01,11

0

α10,00α10,11

 =


pv00

pv01

pv11

pv10

 =


pv1

pv2

pv3

pv22


Here we have used similar notations as in the previous sections, i.e.,αij,rs, (for

i, j, r, s = 0 or 1) denote a generator of the edge ideal associated with the edge

joining the vertices vij and vrs. Interestingly, we note that the non-zero vertex labels
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in pQ2 appear for the vertices 2 and 22. Next, we construct the generalized spline

for Q3.

To construct the generalized splines for the hypercube Q3,we refer to the bipartite

structure and Hamiltonian ordering of Q3. Then it can be easily verified that a

generalized spline for Q3 is given by:

pQ3 =



0

α001,000α001,011α001,101

0

α010,000α010,011α010,110

0

0

0

α100,000α100,011α100,110


=



pv000

pv001

pv011

pv010

pv111

pv110

pv101

pv100


=



pv1

pv2

pv3

pv22

pv5

pv6

pv7

pv23


The vertices of Q3 are vi1i2i3 where (i1,i2,i3) is a binary string of length 3 and two

vertices are adjacent if their respective strings differ only at one position. Also,

we see that,the Hamiltonian cycle in Q3 is one in which the vertices follow a 3-bit

gray code 000,001, 011, 010, 110, 111, 101, 100. We again give the Hamiltonian

ordering to the vertices in Q3 by numbering the vertices 000,. . .,100 as 1,2,. . .,8.

Constructing the generalized spline for Q3 starts with labeling the vertex v000 as

0. Now, the vertices adjacent to v000 are v100, v010 and v001 ,which are numbered as

2,22,23 according to Hamiltonian ordering of the vertices. We see that these are the

only vertices which are labeled with non-zero elements in pQ3 . Also, the vertex labels

of these vertices are obtained by taking the product of the elements belonging to the

edge ideals corresponding to the three edges which are adjacent to these vertices. It

can be verified that with these vertex labelings, pQ3 becomes a generalized spline

for the hypercube Q3, because the edge conditions are satisfied by the vertex labels

of adjacent vertices. We can extend the above method of writing the generalized

spline to higher dimensional hypercubes.

For Q4 we have the first vertex as v0000 which is adjacent to the vertices v0001,v0010

,v0100 and v1000. Using the bipartite structure of Q4 and Hamiltonian ordering, we

get the generalized spline for Q4 as follows
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pQ4 =



0

α0001,0000α0001,1001α0001,1010α0100,1100

0

α0010,0000α0010,1001α0010,1010α0100,1100

0

0

0

α0100,0000α0100,0011α0100,1010α0100,1100

0

0

0

0

0

0

0

α1000,0000α1000,1001α1000,1010α1000,1100



=



pv0000

pv0001

pv0011

pv0010

pv0111

pv0110

pv0101

pv0100

pv1100

pv1101

pv1111

pv1110

pv1010

pv1011

pv1001

pv1000



=



pv1

pv2

pv3

pv22

pv5

pv6

pv7

pv23

pv9

pv10

pv11

pv12

pv13

pv14

pv15

pv24


We give an algorithm for writing the generalized spline for the edge labeled n-

dimensional hypercube Qn, for any n.

• Theorem

Let Qn be an n-regular hypercube with the vertices partitioned into two disjoint

subsets V1 and V2, containing 2n−1 vertices each. We introduce the Hamiltonian

ordering for the vertices of Qn so that the vertices are numbered as 1, 2, 3, 22, . . . , 2n.

Let the first vertex be v00...0 in V1 and adjacent vertices v0...01, v0...010, v0...100, . . . v10...0

in V2 which are numbered as 2,22, 23, . . . , 2n. The vertex labels corresponding to

the generalized spline pQn defined for Qn are as follows

1. The vertex v00...0 is labeled with the element 0 ∈ R , i.e, pv0...0 = 0.

2. The vertex v0...01 which is adjacent to v0...0 is labeled as pv0...01 and is equal to the

product of the n elements belonging to the edge ideals associated with the n edges

adjacent to v00...01.

Thus, pv00...01 = α0...01,0...00α00...01,0...011α00...01,0...0101 . . . α00...01,10...01

Similarly the vertex v00...10 is labeled as pv0...10 which is given as

pv00...010 = α0...10,0...00α00...10,0...011α00...10,0...0110 . . . α00...10,10...010 and so on.

These are the only vertices with non-zero vertex labels, where each vertex label

is a product of n elements belonging to n edge ideals and the remaining vertices

are labeled as zero. It can be easily verified that pQn is a generalized spline on the
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hypercube Qn as the edge conditions are satisfied for the adjacent vertices and also,

pQn is nontrivial since R is an integral domain.

The following is third major result of our research study.

• Module Basis for Generalized Spline Modules

In this section, we have determined conditions for a subset of R(G,α) to form a basis

when G is a Dutch windmill graph and Complete graph K4, when R is GCD domain.

We have given basis criteria for R(G,α) on edge labeled Dutch windmill graph and

special cases of Dutch windmill graph such as Friendship graph and Butterfly graph

which have common cut vertices with Cycle graph Cn and triangles respectively,

over any GCD domain.

The definition of QG[8],as discussed in section 4.5, gives a necessary and sufficient

condition for the existence of basis for the generalized spline modules over the cycle

graph Cn and tree graph as in [8].

We can obtain the basis criteria for generalized spline modules on Butterfly graph

D
(2)
3 and Friendship graph D

(m)
3 , which are special cases of Dutch windmill graph

D
(m)
n over any GCD domain.

v
1

v
2

v
3

v
4

v
5

l
3

l
4

l
6

l
1

l
2

l
5

v
1

v
2m+1

v
2m

v
2v

3

v
4

v
5

v
6

v
7

1

2

m

3

Fig. 7.15: (a) Butterfly Graph D
(2)
3 (b) Friendship Graph D

(m)
3

An edge labeled Butterfly graph has 5 vertices v1, v2, v3, v4, v5 and 6 edges l1, l2, l3,

l4, l5, l6. Using Corollary 3.27[8], we know that flow-up basis for butterfly graph

over any GCD domain exists, as it has common cut vertex between two triangles T1

and T2 (cycle graphs with 3 vertices). From the definition of QG[8], for any graph
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G, we have Q
D

(2)
3

Q
D

(2)
3

= [l1, (l2, l3)].[l2, l3].[l4, (l5, l6)].[l5, l6]

=
l1(l2, l3)

(l1, (l2, l3))
.
l2l3

(l2, l3)
.
l4(l5, l6)

(l4, (l5, l6))
.
l5l6

(l5, l6)

=
l1l2l3

(l1, l2, l3)
.

l4l5l6

(l4, l5, l6)
= QT1 .QT2

Next we give condition for basis criterion for D
(2)
3 .

• Theorem:

Let (D
(2)
3 ,α) be an edge labeled Butterfly graph over any GCD domain R. Then,

(i) Dimension of (D
(2)
3 ,α) = 5.

(ii) If F = {F1, F2, F3, F4, F5} ⊂ R
(D

(2)
3 ,α)

and the determinant of the matrix of set

F is equal to | F |=| F1F2F3F4F5 |, then F is a basis for R
(D

(2)
3 ,α)

if and only if

| F |= Q
D

(2)
3

= r.QT1QT2 where r ∈ R is a unit.

In the next lemma, we apply the above result for Friendship graph D
(m)
3 .

• Lemma

Let (D
(m)
3 , α) be an edge labeled Friendship graph D

(m)
3 with 2m + 1 vertices

v1, v2, . . . , v2m+1 and 3m edge labels l1, . . . , l3m. It is obtained by joining m copies of

triangles, T1, T2, . . . , Tm together along the common vertex v1, which is cut vertex

in D
(m)
3 .

Then,

Q
D

(m)
3

=
l1l2l3

(l1, l2, l3)
.

l4l5l6

(l4, l5, l6)
. . .

l3m−2l3m−1l3m

(l3m−2, l3m−1, l3m)

We can obtain the basis criteria for generalized spline modules on Friendship graph

D
(m)
3 over any GCD domain as follows:

• Theorem

Let (D
(m)
3 ,α) be an edge labeled Friendship graph with 2m+1 vertices v1, v2, . . . , v2m+1

and 3m edge labels l1 . . . , l3m. It is obtained by joining m copies of triangles

T1, T2, . . . , Tm together along the common vertex v1, which is cut vertex in D
(m)
3 .

Let {F1, ..., F2m+1} ⊂ R
(D

(m)
3 ,α)

,then { F1, . . . , F2m+1 } forms a basis for R
(D

(m)
3 ,α)

if

and only if

| F1F2 . . . F2m+1 |= Q
D

(m)
3

= r.QT1QT2 . . . QTm

where r ∈ R is a unit.
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Extending the above result, basis criteria for generalized spline modules on Dutch

windmill graph D
(m)
n over any GCD domain can be proved as follows

1

2 m

3

v
n-1

v
n

v
3

v
2 v
m(n-1)+1

v
m(n-1)

v
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v
3(n-1)+1

v
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v
2(n-1)+2

v
2(n-1)+1

v
1

v
2(n-1)

v
n+2 v

n+1

v
2(n-1)+3

Fig. 7.16: Dutch windmill graph,D
(m)
n

• Corollary

Let (D
(m)
n , α) be an edge labeled Dutch windmill graph with m(n− 1) + 1 vertices

v1, v2, . . . , vm(n−1)+1 and mn edge labels l1,. . .,lmn.

It is obtained by joining m copies of n-cycles Cn1 ,Cn2 ,. . ., Cnm together along the

common vertex v1, which is cut vertex in D
(m)
n .

Then from the definition of QG [8] for any graph G, we have

Q
D

(m)
n

=
l1l2 . . . ln

(l1, l2, . . . , ln)
.

ln+1 . . . l2n

(ln+1, . . . , l2n)
. . .

lmn−(n−1) . . . lmn

(lmn−(n−1), . . . , lmn)

Then {F1,...,Fm(n−1)+1 } forms a basis for R
(D

(m)
n ,α)

if and only if

| F1F2 . . . Fm(n−1)+1 |= Q
D

(m)
n

= r.QCn1
.QCn2

. . . QCnm

where r ∈ R is a unit.

Now we consider Complete graph K4 and Wheel graph W4 (Fig.7.17(a) and (b))

which are isomorphic to each other. These graphs have no common cut vertices with

Cycle graphs, Diamond Graphs or Trees. We found basis criteria for generalized

spline modules on these two isomorphic graphs separately over GCD domain.

From the definition of QG [8], for any graph G, we give QK4 as
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Fig. 7.17: (a) Complete Graph K4 (b) Wheel graph W4

QK4 = [l1, (l2, l3), (l4, l5), (l2, l6, l4), (l5, l6, l3)] · [l2, l3, (l6, l4), (l6, l5)] · [l4, l6, l5]

=
l1(l2, l3)(l4, l5)(l2, l4, l6)(l3, l5, l6)

(l1, (l2, l3), (l4, l5), (l2, l4, l6), (l3, l5, l6))
· l2l3(l6, l4)(l5, l6)

(l2, l3(l6, l4), (l6, l5))
· [l4, l5, l6]

=
(l4, l5)(l5, l6)(l6, l4)[l4, l5, l6]l1l2l3(l2, l3)(l2, l4, l6)(l3, l5, l6)

((l1, l2, l3, (l4, l5)), (l2, l4, l6, (l3, l5, l6)))(l2, l3, l6, l4, (l6, l5))

=
l4l5l6(l4, l5, l6)l1l2l3(l2, l3)(l2, l6, l4)(l5, l6, l3)

((l1, l2, l3, l4, l5), (l2, l4, l6, l3, l5))(l2, l3, l6, l4, l6, l5)

[ (l4l5)(l5, l6)(l6, l4)[l4, l6, l5] = l4l5l6(l4, l5, l6)]

=
l1l2l3l4l5l6(l2, l3)(l2, l4, l6)(l3, l5, l6)(l4, l5, l6)

((l1, l2, l3, l4, l5), (l2, l3, l4, l5, l6))(l2, l3, l4, l5, l6)

The basis criterion for edge labeled Complete graph is as follows:

• Theorem

Let (K4,α) be an edge labeled Complete graph. Let { F1, F2, F3, F4 } ⊂ R(K4,α).

Then

{ F1, F2, F3, F4 } is a basis for R(K4,α), if and only if | F1 F2 F3 F4 | = r QK4 , where

r ∈ R is a unit.

We found basis criterion for generalized spline modules on Wheel graph W4 with 4

vertices, which is isomorphic to Complete graph K4 by calculating QW4 using the

above method.

From the definition of QG[8], for any graph G, we have

QW4 = [l1, (l2, l3), (l4, l5), (l2, l6, l4), (l5, l6, l3)].[l2, l3, (l6, l4), (l6, l5)].[l4, l6, l5]

=
l1l2l3l4l5l6(l4, l5, l6)(l2, l3)(l2, l6, l4)(l5, l6, l3)

((l1, l2, l3, l4, l5), (l2, l3, l4, l5, l6))(l2, l3, l4, l5, l6)
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which is equal to QK4

Now, we can have the following theorem for basis criterion for generalized spline

modules on Wheel graph with 4 vertices over any GCD domain.

• Theorem

Let (W4,α) be an edge labeled Wheel graph . Let {F1, F2, F3, F4} ⊂ R(W4,α). Then

{ F1, F2, F3, F4 } is a basis forR(W4,α), if and only if | F1 F2 F3 F4 | = r QW4 , where

r ∈ R is a unit.

Here we observed that Complete graphK4 and Wheel graphW4 which are isomorphic

to each other have same set of smallest leading entries for their flow-up splines. Also,

the formula for QG is equal for these graphs and basis criterion for generalized spline

modules on these graphs is same, over any GCD domain.This led us to study of

generalized splines on isomorphic graphs as discussed in the following subsection.

The following is the fourth major result of our research study.

• Basis Criteria for Generalized Spline Modules on Some Isomorphic Graphs

We observed that graphs which are isomorphic to each other have same or equivalent

basis criteria since zero trails of these graphs are same and thus QG is also same for

these graphs. We proved that the basis criterion for generalized spline modules on

each graph of an arbitrary set of isomorphic graphs is same over any principal ideal

domain .This result is based upon the result proved in [7] which says that flow-up

basis exists for generalized spline modules on arbitrary graphs over any PID.

Also, we have studied basis criteria for generalized splines on some isomorphic graphs

over GCD domain and constructed flow-up basis for generalized spline modules on

an arbitrary tree. An algorithm is developed for indexing the vertices of an ordered

rooted tree graph such that the above method can generate a flow-up basis for tree

graph and its isomorphic graphs.

First,we have given the basis criterion for generalised spline modules on a set of

isomorphic graphs, over any GCD domain R.

• Theorem:

Let {G1, G2, . . . , Gk} be a set of isomorphic graphs. Then the basis criterion for

generalized spline modules on each of these graphs, if exists, is same over any GCD

domain.

We give an example to show that the cycle graph C5 and it’s isomorphic graph C
′
5

have the same QG =
l1l2l3l4l5

(l1, l2, l3, l4, l5)
, as calculated using the zero trails.
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Fig. 7.18: (a)Cycle graph C5 (b)Isomorphic graph C ′
5

• Example:

We know that the set {F1, F2, F3, F4, F5} ∈ R(C5,α) forms a basis if and only if

| F1F2F3F4F5| = rQC5 ,

where r ∈ R is a unit.

Since, C
′
5 is isomorphic to C5, QC5 will be the same as QC

′
5
, and hence the images

{F ′
1, F

′
2, F

′
3, F

′
4, F

′
5} will form a basis for R(C

′
5,α

′ ).

Now we discuss the method of indexing of vertices of an ordered rooted tree so that

flow-up basis can be constructed for generalized spline modules over these trees.It

follows from Theorem on basis criteria of isomorphic graphs that all isomorphic

trees will have the same basis criteria over any GCD domain. First we discuss the

method of indexing of vertices of a star tree with 6 vertices.

We define the flow-up classes of generalized splines for the star graph with six

vertices, using the zero trail method.

• Star Tree with 6 vertices:

05(1)

01(1)

02(1)

03(1)

04(1)

0

l
05

(1)

l
04

(1)

l
03

(1)

l
01

(1)

l
02

(1)

Fig. 7.19: Star Tree with 6 vertices

The indexing of the vertices is done level-wise. The root vertex is indexed as 0, and

all the five leaf vertices at level 1 are indexed as 01(1), 02(1), 03(1), 04(1) and 05(1)

respectively in anticlockwise sense. Thus, any generalized spline over this graph can

be expressed as
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P =



p
(1)
05

p
(1)
04

p
(1)
03

p
(1)
02

p
(1)
01

p0


Here pv ∈ R is the vertex label corresponding to the vth vertex in the graph.The

flow-up classes for this graph {F 0, F 01(1), F 02(1), F 03(1), F 04(1), F 05(1)} are obtained

as follows: 



1

1

1

1

1

1





0

0

0

0

l
(1)
01

0





0

0

0

l
(1)
02

0

0





0

0

l
(1)
03

0

0

0





0

l
(1)
04

0

0

0

0





l
(1)
05

0

0

0

0

0




Clearly, each class in the set {F 0, F 01(1), F 02(1), F 03(1), F 04(1), F 05(1)} satisfies the

GKM or edge condition and hence is a generalized spline over the star graph with six

vertices. Also, we can see that the determinant | F 0 F 01(1) F 02(1) F 03(1) F 04(1) F 05(1) |
= l

(1)
01 l

(1)
02 l

(1)
03 l

(1)
04 l

(1)
05 = QG , where G is the star graph with six vertices in this case.

Hence, we conclude from theorem [2.14] in [8] that the set

{F 0, F 01(1), F 02(1), F 03(1), F 04(1), F 05(1)} forms a basis for the generalized spline mod-

ule R(G,α) for this graph. Next, we generalize the above method to arbitrary rooted

tree graphs in which the vertices are ordered from left to right at all levels. Consider

the ordered rooted tree with seven vertices .

011(2)

021(2)

  0(0)

l
022

(2)

l
011

(2)

l
021

(2)

l
02

(1)

l
01

(1)

l
012

(2)

01(1)

022(2)

02(1)

012(2)

Fig. 7.20: Ordered rooted tree with 7 vertices
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The root vertex is indexed as 0. There are two vertices in level 1, which are indexed

as 01(1) and 02(1) , ordered from left to right. The four leaf vertices are indexed as

011(2), 012(2) (children of vertex 01(1) and 021(2), 022(2)(children of vertex 02(1) ,with

the left to right ordering).

Any generalized spline over this graph can be expressed as

P =



p
(2)
022

p
(2)
021

p
(2)
012

p
(2)
011

p
(1)
02

p
(1)
01

p0


Using the zero trail method, we get the flow-up classes of generalized splines for this

graph as {F 0, F 01(1), F 02(1), F 011(2), F 012(2), F 021(2), F 022(2)} which is equal to
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We see that the determinant of the matrix

| F 0F 01(1)F 02(1)F 011(2)F 012(2)F 021(2)F 022(2) | = l
(1)
01 l

(1)
02 l

(2)
011l

(2)
012l

(2)
021l

(2)
022 = QG , for the

graph G.

Thus, the set of generalized splines {F 0, F 01(1), F 02(1), F 011(2), F 012(2), F 021(2), F 022(2)}
forms a basis for the module R(G,α).

We have obtained the following algorithm for writing down the flow up basis for an

arbitrary tree which is rooted and it’s vertices at each level are ordered from left to

right, which is as follows

– All entries for the flow up basis element F 0 are one.

– Let there be n vertices in level 1, indexed as 01(1), 02(1) ,. . ., 0n(1). The ordering

of these vertices are taken from left to right. Then the corresponding elements

of flow up basis are F 01(1) ,F 02(1) ,. . ., F 0n(1)
, where F 0i(1) for 1 ≤ i ≤ n is
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constructed by taking F 0i(1)

0i = F 0i(1)

0i1 = F 0i(1)

0i2 = . . . = F 0i(1)

0ini
=l

(1)
0i , and all

other entries as zero. Here F 0i(1)

v denotes the vertex label of the vertex v in the

generalized spline F 0i(1) and 0i1, 0i2, . . . , 0ini, are the children of the vertex 0i.

This construction ensures that the GKM or edge conditions are satisfied by all

the vertex labels of the spline F 0i(1) .

– Similarly, the basis elements of the flow up basis corresponding to the children

of the higher level vertices are constructed till we reach the leaf vertices. The

leaf vertices will have only one non zero entry equal to the edge label of their

parent vertices and zero otherwise.

It can be easily seen that the determinant of the matrix whose columns are the

splines F 0,F 01(1) ,F 02(1) ,. . . is equal to the product of the edge labels of all edges

in the tree graph and hence equal to QG, for the tree graph G. Thus the set of

generalized splines {F 0, F 01(1) , F 02(1) , . . .} forms a flow up basis for G.

7.7 Conclusions

Our work is concluded by developing an algorithm to construct the generalized spline

rings for the special graphs such as the complete graphs, complete bipartite graphs and

hypercubes.

We found an algorithm for writing the generating set which acts as a basis for the

generalized spline modules for cycle graphs and for wheel graphs, taking the base ring as

quotient ring of integers.

We gave basis criteria for R(G,α) on edge labeled Dutch windmill graph and special cases of

Dutch windmill graph such as Friendship graph and Butterfly graph which have common

cut vertices with Cycle graph Cn and triangles respectively, over any GCD domain by

using determinantal techniques[8] and flow-up bases.

We have given basis criteria for complete graph K4 and for wheel graph W4, which are

isomorphic to each other over any GCD domain. These graphs have no common cut

vertices with cycle graphs, diamond graphs and trees.We observed that graphs which are

isomorphic to each other have same or equivalent basis criteria since zero trails of these

graphs are same and QG is also same for these graphs. We generalize this result and prove

that basis criteria for generalized spline modules on each graph of an arbitrary set of

isomorphic graphs is same over any principal ideal domain.Depending upon the type of

graph and the base ring, R we can easily use this result to find QG as well as basis criteria
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for generalized spline modules on graphs which are isomorphic to some graphs like cycle

graphs,diamond graphs, trees and Dutch windmill graphs.

We extended this result to generalized spline modules on isomorphic trees over any GCD

domain and constructed Flow up basis for generalized spline modules on a star graph. An

algorithm is developed for indexing the vertices of ordered rooted trees which helps us to

generalize the method of constructing flow-up basis for generalized spline modules on any

ordered rooted tree and hence on a family of isomorphic trees over a GCD domain.

7.8 Future directions for further research and open

questions

The graphs we have used in our research find important applications in network and

approximation theory and the present work adds to the existing knowledge and under-

standing in these and related areas. Also, it opens a vast field for research as we can think

of studying the generalized spline moodules over these and other graphs by changing the

base rings to other rings such as the polynomial rings and ring of Laurent polynomials.

As these rings are PIDs, we can also try to find suitable bases for the generalized spline

modules for these graphs.

We have basis criteria for generalized spline modules on arbitrary graphs over principal

ideal domains.Further investigations on arbitrary graphs open a possibility of finding proof

for general basis criteria for generalized spline modules on arbitrary graphs over any GCD

domain.

Open Questions

• 1. Identify and study generalized spline modules on complete graphs,complete

bipartite graphs,hypercube and cycle graph over polynomial rings and ring of

Laurent polynomials.

• 2. Find proof of general basis criteria for generalized spline modules on arbitrary

graphs over any GCD domain and give an algorithm to determine the entries of a

flow-up class with the smallest leading entry on graphs like wheel graph,complete

graph etc.


