
Chapter 1

Introduction

The term ‘splines’ meaning a ‘strip of wood or metal’ came from engineering, used by

ship builders to construct models for the purpose of ship building. Lead weights called

’ducks’ were placed at key points by draftsmen so that the splines would bend, creating

smooth curves in between the specified points. This usage of splines in shipbuilding was

the earliest use of constructive geometry to draw free-form shapes and these techniques

were used from 13th century to 16th century, before the invention of CAGD. Ship builders

used to store these models in draftsman’s drawing board in the form of blueprints.

Later classical drafting methods were combined with computational techniques and the

classical drafting constructions were translated into numerical algorithms. Schoenberg’s

fundamental paper in 1946 [96], introduced the theory of splines mathematically and

became the focus of active research since then. Owing to their beautiful properties and

wide applications in approximation theory and CAGD,spline theory became an important

area for mathematicians,engineers and designers to delve deeper for better understanding

of the subject. Beginning with the definition of splines as piecewise polynomial functions

and restricting to polynomials in one dimension, we have

• Polynomial spline[37]

Let the interval [a, b] in R be subdivided into intervals [ti, ti+1], where i = 0, 1, 2, . . . ,

k − 1, so that [a, b] = [t0, t1] ∪ [t1, t2] ∪ . . . ∪ [tk−2, tk−1] ∪ [tk−1, tk],

a = t0 ≤ t1 ≤ . . . ≤ tk−1 ≤ tk = b

The spline S is a function S : [a, b] −→ R, where the restriction of S on each

subinterval [ti, ti+1] is a polynomial Pi : [ti, ti+1] −→ R[x],

On the ith sub interval of [a, b],S is defined by Pi,

S(t) = P0(t),t0 ≤ t < t1,
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S(t) = P1(t),t1 ≤ t < t2,
...

S(t) = Pk−1(t),tk−1 ≤ t < tk.

The points t0, t1, . . . , tk are called the knots or the vector t=(t0, t1, . . . , tk) is called

the knot vector, and if the polynomial pieces have degree at most n, then the spline

S is of degree ≤ n or of order n + 1. If S ∈ Cri in a neighbourhood of ti, then

the spline is said to be of smoothness (at least) Cri at ti, i.e, the pieces Pi−1 and

Pi have equal derivatives upto order ri at ti. Given a knot vector t, a degree n

and a smoothness vector r = (r1, r2, . . . , rn) for t, the set of splines of degree ≤ n,

equipped with the operations of pointwise addition and multiplication of functions

and also taking real multiples of functions becomes a vector space. This space is

commonly denoted as Sr
n(t).

Initially piecewise polynomials were studied for curve-fitting, in fact, the word spline

was only used for a particular C2 interpolatory piecewise cubic polynomials. Later,

the definition was broadened to include any piecewise polynomial. Besides the appli-

cations of splines in curve-fitting, they are widely used in the finite element method

to estimate solutions of ordinary and partial differential equations. Subsequently,

applied mathematicians and engineers working in the areas of curve fitting, finite

element methods, computer-aided geometric design, signal processing, mathematical

modelling, computer-aided design, computer-aided manufacturing, and circuits and

systems started using multivariate splines extensively. In fact, spline functions

are most successful approximating functions for practical purposes till today. In

regression models, regression splines have several benefits when compared to linear

and polynomial regressions. Unlike polynomial interpolation, which must use a high

degree polynomial to produce flexible fits, splines introduce flexibility by increasing

the number of knots, keeping the degree fixed. By their definition, the study of

spline functions involves both algebra and geometry, and the smoothness conditions

also require an understanding of analysis.

The cubic polynomial spline function represents the mathematical equivalent of

the draftsman’s wooden beam. S.Coons got recognition for his work[29] in the

transition of aircraft drawings to computations. Later the theory of splines as an

area of mathematical studies was extended in many different directions and first

successful extension was made by C. De Boor [36],[37]. Many efforts have been made

over several decades in developing the mathematics of spline functions, because of

the importance of splines in industrial design. Smoothing splines have been used

in fitting curves to data with the availability of algorithms to work on smoothing

splines started in the late 1960s[90].
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• Example[90]

Fig. 1.1: A cubic interpolating spline—the dotted path—and a cubic smoothing
spline—the continuous path.

Polynomial splines were extended to B-splines ( Basis splines), which are sums of

lower-level polynomial splines.These B-splines were introduced by I. Schoenberg for

the case of uniform knots[96] in 1970s.The following figure shows an example of a

cubic interpolating spline.

Basis splines are defined as

• Basis Splines[37]

B-splines are commonly used as basis functions to fit smoothing curves to large data

sets. Given a non-decreasing knot vector,(t0, t1, . . . , tn+k−1),the n-basis splines of

order k is defined by,

Bi,1(x) =

1, ti ≤ x < ti+1

0, else

Bi,k(x) =
(x− ti)

(ti+k−1 − ti)
Bi,k−1(x) +

(ti+k − x)

ti+k − ti+1

Bi+1,k−1(x)

for i = 0, . . . , n− 1.The common case of cubic B-splines is given by k = 4.The above

recurrence relation can be evaluated in a numerically stable way by the De Boor

algorithm[37].

If we define appropriate knots on an interval [a, b], then the B-spline basis functions

form a complete set on that interval.Therefore we can expand a smoothing function

as

f(x) =
n−1∑
i=0

ciBi,k(x)

given enough (xj, f(xj)) data pairs.The coefficients ci can be readily obtained from

a least squares fit.
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1.1 Classical theory of splines

With the extension to higher dimensions, the Cr splines were defined over the polytopal

complex ∆ ⊂ Rd as F = (Fσ) of polynomials, where Fσ ∈ R = R[x1, x2, . . . , xn], for every

n-dimensional face σn ∈ ∆n.Also if σ ∩ σ
′
= τ ∈ ∆n−1, then lr+1

τ |Fσ − Fσ′ , where lτ is the

linear form vanishing on τ . The set of all Cr splines on ∆ was denoted by Sr(∆) and

Sr
d(∆) consisted of all F ∈ Sr(∆) with deg(Fσ) ≤ d for all σ ∈ ∆n. It was proved in [16]

that Sr
d(∆) was a subring of the product ring Rt as well had the module structure over the

ring R. Many mathematicians started investigating the ring theoretic properties of Sr
d(∆)

and several important results were established in this area. As a module over R, the major

question was finding the dimension and basis of Sr
d(∆), in terms of combinatorial and

geometric information of ∆ ∈ Rd.Billera [18] ,found the dimension and basis for S0
d(∆),

for all n when ∆ was a simplicial complex. However, for ∆ to be a polyhedral complex,

it could not be evaluated even for n = 2 or 3. Alfeld and Schumaker [3]found dimSr
d(∆)

for d ≥ 3r + 1, when r > 0. Schenck [94],[95] conjectured that dimSr
d(∆) was given by

Schumaker’s lower bound [3] for d ≥ 2r + 1. Another question in this area was freeness

of Sr(∆) as a R-module and finding generators for Sr(∆) whenever it was free. Billera

and Rose [15],[18] introduced the definition of splines over the dual graphs of polyhedral

complexes. This approach was later studied by many mathematicians as McDonald[77]

and Schenck[94],Rose [93] etc. Independently, splines were studied by geometers and

topologists and expressed as equivariant cohomology of torics and other algebraic varieties

as in the works of Brion [22], Schenck [94],[95]. Goresky, Kottwitz and MacPherson [58]

developed a combinatorial construction of equivalent cohomology called the GKM theory,

which can be used for any algebraic variety X with an appropriate torus action. It builds

a graph GX whose vertices are the T -fixed points of X and whose edges are the one

dimensional orbits of X. The theory became a powerful tool in Schubert Calculus and

representation theory as in Knutson and Tao[67], and also in other fields.

1.2 Algebraization of Splines

Recalling the definition of Cr-splines we have,

for a polyhedral complex P, a Cr spline on P is a piecewise polynomial function (a

polynomial is assigned to each d−dimensional cell or face σ of P ), such that two polynomials

supported on d−faces which share a common (d−1)−face τ , meet with order of smoothness

r along the common face. The set of splines of degree at most k and are of smoothness

of order r is denoted by Cr
k(P ), is a vector space[17]. A Cr−spline is represented as a
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vector of polynomials (f1, f2, . . . , fn), where each fi is a polynomial of degree at most

k. Multiplying the vector by a fixed polynomial f gives (f.f1, f.f2, . . . , f.fn), which is

again a Cr−spline. This means that the set of splines is a module over the polynomial

ring as shown in [18]. For two d−cells σ1 and σ2 sharing a common (d− 1)−face τ , let lτ

be a nonzero linear form vanishing on τ . Billera and Rose [18] have shown that a pair

of polynomials fi supported on σi, i = 1, 2 meet with smoothness of order r along τ iff

lr+1
τ |f1 − f2.

As an example, we see a 2−dimensional polyhedral complex which is a planar simplicial

complex P and is the star of a single interior vertex v0, the origin.The adjacent triangles

or 2-faces meet over common lines, i.e, the 1−dimensional faces.

• Example[18]:

Fig. 1.2: Example of a Cr–spline

Begining with the simplex in the first quadrant and moving clockwise [Fig.1.2], the

piecewise polynomials defined on the triangles are f1, f2, f3, f4.To obtain a global

Cr function, we require element (f1, f2, f3, f4) to satisfy the conditions,

a1.y
r+1 = f1 − f2;

a2.(x− y)r+1 = f2 − f3;

a3.(x+ y)r+1 = f3 − f4;

a4.x
r+1 = f4 − f1.

It can easily be verified that the continuity conditions are satisfied at every edge

sharing the boundary of two simplexes[18].

Simcha Gilbert,Shira Polster and Juliana Tymoczko [55]expanded the family of

objects on which the generalized splines were defined to arbitrary graphs which

opened the possibilities of solving several open questions in classical theory of splines

which could not be solved using other approaches. These splines were termed as

generalized splines defined over edge labeled graphs in [55] as follows:
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• Edge Labeled Graph[55]

Let G = (V,E) be a graph. Let R be an arbitrary commutative ring with identity

which is also an integral domain and let I denote the set of all non-zero ideals of R.

Let a function α : E −→ S be an edge labeling function defined on G,where α labels

each edge in graph G by the ideals of the ring R. Then the graph G with function α

is called an edge labeled graph which is denoted by G = (V, α).

The definition of generalized splines over an arbitrary edge labeled graph G is as

follows

• Generalized Spline[55]

Let G = (V, E) be a graph of order n. Let R be a commutative ring and let I

denote the set of all ideals of R. Let α : E −→ I be an edge labeling. A generalized

spline of (G, α) is a vertex labeling F : V −→ R such that for each edge uv,

F (u)− F (v) ∈ α(uv) where F (u) ∈ R for each vertex in u in V.This condition is

known as edge condition or GKM condition satisfied by the generalized splines over

the edges of the graph G.The set of splines defined over G is denoted by R(G,α).

Each element of RG,α is called a generalized spline. If the edge labeling is clear, it is

denoted as RG.

The following figures (as discussed in [55]) are two examples of generalized splines

RC4 and RK4 , defined on the 4-cycle C4 and the complete graph K4.

0
α!α"

(α!+α#+α$)α" (α!+α#)α"

(α") (α#)

(α!)

(α$)

Fig. 1.3: Generalized spline on C4
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0
α!α"α#α$

α!α"α#α$+α%α"α#α$+α&α"α#α$ α!α"α#α$ + α%α"α#α$

(α") (α%)

(α!)

(α&)

(α
$)(α#)

Fig. 1.4: Generalized spline on K4

The set of generalized splines on an edge labeled graph has a ring structure and

R-module structure like classical splines. Gilbert, Polster and Tymoczko [55] proved

foundational results about the set of generalized splines, completely analysing the

ring of generalized splines for trees. They have obtained the generalized splines for

arbitrary cycles and have shown that the study of generalized splines for arbitrary

graphs can be reduced to the case of different sub graphs, especially cycles or trees.

They proved in [55] that every collection of generalized splines over an integral

domain has free-submodule of rank | V |, producing a lower bound for the dimension

of the ring of splines RG, whenever RG is a free module over R. Basic problems that

arise naturally in the theory of generalized splines is that it focuses on particular

cases of the choices of R,the graph G, the ring R and the edge labeling function

α which maps the edges to the ideals of the ring R. Also, the module structure

of the ring of generalized splines remains far from being understood in terms of

freeness and existence of basis or generating set, for an arbitrary choice of the ring

R[55]. Also,it is not clear how the ring RG will be affected under the graph theoretic

constructions such as addition or deletion of vertices.

A special type of generalized splines, which are called flow-up classes, are useful to

find module bases for R(G,α). Handschy, Melnick and Reinders [63] studied integer

splines and the existence of flow-up classes on cycles over the ring of integers Z.
Each flow-up class has one more zero than its predecessor and the nonzero labels

“flow up” the graph hence we write the flow-up class from bottom to top.If Gk =

(g1, ..., gn) is a flow-up class,then we write it as a vector[63].
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Gk =


gn
...

g1


The following figures represent an example of a spline on a triangle,a system of

congruences that it represents and also flow-up classes on a triangle.

• Example[63]

Fig. 1.5: Example of a spline on a triangle and the system of congruences

• Example[63]:

Fig. 1.6: Flow-up classes G0, G1 and G2 on a triangle

Bowden and Tymoczko [21] considered the module of generalized splines over the quotient

ring , Z/mZ which is not an integral domain. They have shown that over Z/mZ , the

minimum generating sets are smaller than expected. The ring Z/mZ is a finite ring

which is not an integral domain. Thus the generalized spline modules over Z/mZ must

have minimum generating sets namely a generating set with smallest possible size. The

structure theorem for finite abelian groups [32]shows that finite modules are generally

not free, but the minimum generating sets function like bases except that each element

b of the minimum generating set has a scalar cb satisfying cb.b = 0.There are at most n

elements in the minimum generating set of splines over the integers mod m which is not

an integral domain, on a graph with n vertices [21]. The rank of the Z-module of splines is

defined to be the number of elements of a minimum generating set and Bowden ,Tymoczko

proved that the smallest flow-up classes exist and formed a basis for generalized spline
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modules on a graph over Z/mZ. Nealy Bowden, Sarah Hagen and Stephanie Reinders [21]

proved that flow-up classes with smallest leading entries form a module basis for R(G,α),

where R is an integral domain.Nealy Bowden, Sarah Hagen, Melanie King, and Stephanie

Reinders[20] introduced two new bases for the module of integer generalized splines on

cycles naming them as the triangulation basis and the King basis[20]. Each of these bases

is fully expressible in terms of the edge labels of the cycles and the triangulation basis

is constructed from triangulated cycles and hence exists for arbitrary cycles[20]. Their

results generalized to principle ideal domains, which include classical univariate splines and

Prufer domains[20].Also they presented the multiplication table of splines on cycles where

the products of splines are expressed in terms of the King basis and found multiplication

tables of equivariant cohomology rings in terms of Schubert bases which is the central

problem of Schubert calculus[20].This work provides a criterion for the existence of flow-up

bases[20].

In [50], Gjoni studied integer generalized splines on cycles and gave basis criteria for

Z(Cn,α) via determinant of flow-up classes. Emmet Reza Mahdavi [74] characterized integer

generalized splines on the diamond graph and developed a determinantal criterion for a

given set of splines to form a basis.Also in [7], Selma Altinok and Samet Sarioglan proved

the existence of flow-up bases for generalized spline modules on arbitrary graphs over

principal ideal domains. They introduced a method [7] to determine the smallest leading

entries of flow-up classes on arbitrary graph over a principal ideal domain, by using zero

trails and gave an algorithm to determine flow-up classes on arbitrary ordered cycles. In

[8], Selma Altinok and Samet Sarioglan generalized that work and gave basis criteria for

R, where R is a GCD domain. They have given basis criteria for diamond graphs and

trees over any GCD domain. They have also given basis criteria for graphs obtained

by joining cycles, diamond graphs and trees together along common cut vertices.Katie

Anders, Alissa S. Crans, Briana Foster-Greenwood,Blake Mellor and Juliana Tymoczo

in [9] characterized the graphs that only admit constant splines for a large class of rings.

They proved that if a graph has a particular type of cut set then the space of splines

naturally decomposes as a certain direct sum of submodules.

In this study, we have obtained the generalized spline rings and the basis criterion for

some very important family of graphs which find applications in network theory.

In Chapter 3, we have addressed some of the open questions posed by Simcha Gilbert,

Shira Polster and Juliana Tymoczko in [55]. We have constructed the ring of generalized

splines for the special cases, where G is a complete graph Kn, complete bipartite graph

Kn1,n2 and also for the hypercubes Qn for all n, n1, n2. In all these graphs,the ring R is

a commutative ring with identity which is also an integral domain and the edge labels
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are the non-zero ideals of the ring R. Also, the methods of constructing the generalized

splines over the complete graphs Kn(for any n) and complete bipartite graphs Kn1,n2 (for

any n1, n2) have been generalized and Python code is developed to write these splines.

The bipartite structure and Hamiltonicity of the hypercubes are used to find the general

algorithm for writing the set of generalized splines RQn (for any n).

In Chapter 4,we have obtained the basis criteria for R(G,α) on edge labeled Dutch windmill

graph and special cases of Dutch windmill graph such as Friendship graph and Butterfly

graph, which have common cut vertices with Cycle graph Cn and triangles respectively,

over any GCD domain.They have used zero trail method and formula QG given by Selma

Altinok and Samet Sarioglan[7],[8].We have also seen that the results for the complete

graph K4 and the wheel graph W4, which are isomorphic and have concluded that they

have the same basis criteria over a GCD domain.

In Chapter 5,we extended the work done by Nealy Bowden and Julianna Tymoczko on

cycles [21] to wheel graph which is a graph extension to cycle graph.We classified splines

on wheel graphs, finding a minimum generating set of flow-up classes over Z/pkZ, where
p is a prime.We also classified splines on cycles over Z/mZ, if m has few prime factors

and found a generating set of flow-up classes on these graphs over Z/mZ.

In Chapter 6,we proved that basis criterion for generalized spline modules on each graph of

an arbitrary set of isomorphic graphs is same over any GCD domain, provided flow-up basis

exists for those graphs.We have used results from [7],[8] and Chapter 5 for proving these

results. We have constructed flow-up basis for generalized spline modules on an arbitrary

tree over any GCD domain. Also an algorithm is developed for indexing the vertices of

an ordered rooted tree graph using the results in [24] to establish isomorphism between

trees..This helps us in obtaining the flow-up basis and basis criteria for an ordered rooted

tree graph and all graphs that are isomorphic to these graphs.This work is submitted for

publication.

Thus we have studied ring and module of generalized splines over a variety of graphs consid-

ering base rings which are either GCD domains,integral domains or quotient rings.However

we have also realized that our study has generated several areas which can be taken up

for further study and finding applications of the algorithms for the real world problems.


