
Chapter 2

Preliminaries

2.1 General Introduction

Billera and Rose [17],[18] pioneered the study of algebraic splines, introducing methods

from commutative and homological algebra. Billera’s solution of Strang’s Conjecture

(Theorem 5.8) in [15], using homological algebra indicated that the understanding and

applicability of spline theory can be enhanced to a greater extent with this new approach.

It became an active area of research and the study was enriched further by the research

work carried forward by Ruth Haas, P. Alfeld, L. Schumaker, H. H. Andersen, John

Morgan, Ridgway Scott, Hal Schenck etc.[62],[6],[5],[10],[78],[94].

Spline theory developed independently in topology and geometry. Simcha Gilbert, Shira

Polster and Julianna Tymoczko [55], expanded the family of objects on which these splines

were defined to arbitrary graphs, which they called the generalized splines. Their definition

of generalized splines opened possibilities to do several things that weren’t possible from

the algebraic or geometric perspectives[55]. Their study was enriched by the works of

Selma Altinok and Samet Sarioglan, Nealy Bowden, Sarah Hagen, Melanie King, and

Stephanie Reinders, Polster. S and Tymoczko. J in [8],[7],[20],[21].

The objective of this research study is to delve deep into the study of generalized splines

defined over a variety of graph families which are extensively used in network theory. In

this chapter we give the preliminaries in commutative algebra, algebraic topology, graph

theory and spline theory which we have used in our work. We have also included the

important definitions and results discussed in the studies dealing with generalized splines,

which are used in proving the results in our work. Although, the proofs of many theorems

are excluded, but they can be obtained from the references given at the end.
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In section 2.2 we have discussed the fundamentals in commutative algebra such as

the definitions and examples of rings, subring, ideals, integral domains, quotient rings,

product rings and ring homomorphism and isomorphism. In section 2.3 we have given the

preliminaries from algebraic topology which includes polyhedral and simplicial complexes

and their properties. In section 2.4,we have discussed algebraic approach to dimension

problem of splines over polyhedral complexes which includes spline spaces over polyhedral

complex and algebraic criterion followed by definitions of edge labeled graph, generalized

splines,Isomorphism in edge labeled graphs, flow-up class,zero trails, QG for an edge labeled

graph G, AHU Algorithm,isomorphism in ordered rooted trees and several examples for

better understanding.Also we have given theorems,propositions,lemmas relevant to our

work from [55],[63],[21],[7],[8].

2.2 Preliminaries from Commutative Algebra

• Ring

A non-empty set R together with two binary operations (+) and (·) called addition

and multiplication respectively, is called a ring if it has the following three properties.

(i) (R,+) is an abelian group,i.e,

(a)∀a, b ∈ R, a+ b ∈ R.

(b) ∀a, b, c ∈ R, (a+ b) + c = a+ (b+ c).

(c)∃0 ∈ R such that a+0 = a = 0+ a, ∀a ∈ R. 0 is unique and is called the additive

identity or the zero element.

(d) ∀a ∈ R, ∃b ∈ R such that a+ b = 0 = b+ a. b is unique and is denoted by −a.

It is called the additive inverse of a.

(e) ∀a, b ∈ R, a+ b = b+ a

(ii) (R, ·) is a semi-group. i.e,

(a) ∀a, b ∈ R, a.b ∈ R.

(b) ∀a, b, c ∈ R , (a · b) · c = a · (b · c).

(iii) Distributive laws hold, i.e, ∀a, b, c ∈ R, a.(b+ c) = a.b+ a.c.

The well known examples of rings are the following:

Examples

1. The sets of integers (Z), rational numbers (Q), real numbers (R) and complex

numbers (C) with usual addition and multiplication are rings.
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2. The set of all n× n matrices over R is a ring with respect to usual addition and

multiplication of matrices.

Also, we have the polynomial rings which are defined as

• Polynomial Ring

Let R be a ring. The polynomial ring in X with coefficients in a ring R consists of

formal expressions of the form: g(X) = b0 + b1X + b2X
2 + . . .+ bmX

m,where bi ∈ R,

m ∈ N . It can be easily verified that the ring theoretic properties are satisfied by

the set of polynomials of degree atmost m, for m ∈ N .

We now give the definition of ideals in a ring.

• Ideal

Left ideal Let R be a ring. A subset I of R is called a left ideal of R if

1. I is a subgroup of (R, +), i.e., a, b ∈ I ⇒ a− b ∈ I and

2. I is closed for arbitrary multiplication on the left by elements in R, i.e., a ∈ I

and x ∈ R ⇒ xa ∈ I.

Right ideal A subset I of R is called a right ideal of R if

1. a, b ∈ I ⇒ a− b ∈ I and

2. a ∈ I and x ∈ R ⇒ ax ∈ I.

Two sided ideal A subset I of R which is both a left ideal and a right ideal is

called a two sided ideal, i.e.,

1. a, b ∈ I ⇒ a− b ∈ I and

2. a ∈ I and x ∈ R ⇒ both ax ∈ I and xa ∈ I.

Examples

1. R is an ideal in R and is called the unit ideal.(0) is also an ideal in R and is

called the zero ideal.The ideals (0) and R are called the trivial ideals of R.

2.For a fixed integer n, nZ = {nx|x ∈ Z} is an ideal of Z.

The principal ideal in a ring R is the ideal generated by a single element in R. The

ideal nZ for any n ∈ N is a principal ideal in the ring of integers Z. In fact, all

multiples ax of an element x ∈ R form a principal ideal denoted by (x)

It can be seen that every ideal in the ring of integers Z is principal ideal (m),

generated by a single element m ∈ Z.

• Operations on Ideals

If a, b are ideals in a ring R, their sum a+ b is the set of all x+ y where x ∈ a and
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y ∈ b. It is the smallest ideal containing a and b. More generally, we may define the

sum Σi∈Iai of any family (possibly infinite) of ideals ai, its elements are all sums

Σi∈Ixi where xi ∈ ai for all i ∈ I and almost all of the xi (i.e. all but a finite set) are

zero. It is the smallest ideal of R which contains all the ideals ai. The intersection of

any family (ai) of ideals is an ideal. The product of two ideals a, b in R is the ideal

ab generated by all products xy, where x ∈ a and y ∈ b. It is the set of all finite

sums Σxiyi where each xi ∈ a and yi ∈ b. Similarly we define the product of any

finite family of ideals. In particular, the powers an(n > 0) of an ideal a are defined

as, the ideal generated by all products x1x2 . . . xn in which each factor xi ∈ a.

Examples

1)If R = Z, a = (m), b = (n)then a+ b is the ideal generated by the h.c.f of m and n

and a ∩ b = null set ⇐⇒ m,n are coprime.

2)R = k[x1, . . . , xn], a = (x1, . . . , xn) be the ideal generated by x1, . . . , xn.Then am

is the set of all polynomials with no terms of degree < m.

Next we define a subring of a ring R.

• Subring

Let R be a ring. A non-empty subset S of R is called a subring of R if (S , +) is a

subgroup of (R, +) and (S, · ) is a sub semi-group of (R,·). Or, equivalently, the

restrictions of the operations (+) and (.) on R to S make ( S, +, · ) a ring in its

own right. It is obvious that a subring of a subring of a ring R is a subring of R.

Examples

1. The subsets 0 and R are subrings of any ring R and are called the trivial subrings

of R.

2. The subsets Z ⊂ Q ⊂ R are all subrings of C .

Next we give the definition and examples of a commutative ring with identity,

division ring, quotient ring and integral domains.

• Commutative ring with identity element

If the semi-group (R,.) has an identity, it is unique, is denoted by 1 and is called the

identity element of R. A ring R is said to be commutative if the semi-group (R, .) is

commutative,i.e,

(a) a · b = b · a,∀a, b ∈ R.

(b)∃ an identity element 1 ∈ R such that a · 1 = 1 · a = a,∀a ∈ R.

Examples The rings Z,Q,R,C are commutative with identity. Every non-zero

element of Q,R,C is invertible and the inverse of a ̸= 0 is 1/a. However, the only

invertible elements in Z are ±1.
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• Division Ring

A ring R with multiplicative identity 1, where 1 ̸= 0 is called division ring if every

nonzero element has multiplicative inverse,i.e, there exists b ∈ R such that ab = 1.

The rings Q,R,C are some examples of division rings.

Units in a ring are defined as

• Unit

Let R be a ring with identity 1 ̸= 0. An element u of R is called a unit in R if there

is some v in R such that uv = vu = 1. Thus every non zero element in a division

ring is a unit.

Example

Units of the ring Z of integers are ±1.

The zero divisors are the elements in a ring defined as

• Zero divisor

An element a ∈ R is said to be a left zero divisor if there exists b ̸= 0 such that

a · b = 0. Similarly, a is a right zero-divisor if there is a c ̸= 0 such that c · a = 0.

An element a ∈ R is said to be a zero-divisor if a is either a left zero-divisor or a

right zero-divisor.

In any ring R with atleast two elements, 0 is a zero-divisor, called the trivial

zero-divisor.

• Integral Domain

A non-zero ring R is called an integral domain if there are no non-trivial zero-divisors

in R. The rings Z,Q,R,C are examples of integral domains.

A subgroup allows us to partition a group into disjoint subsets of the same size,

called cosets.Cosets are defined as,

• Cosets

Let H = {h1, h2, h3, . . .} be a subgroup of G.Then for g ∈ G the set gH :=

{gh1, gh2, gh3, . . .} = {gh|h ∈ H} is called the left coset of H with represen-

tative g. Analogously,the right coset with representative g is defined as Hg:=

{h1g, h2g, h3g . . .} = {hg|h ∈ H}. The coset eH = H = He is called the trivial

coset of H.

• Quotient Ring

Let R be a ring and I be a two sided ideal. Considering just the operation of

addition, R is a group and I is a subgroup. Infact, since R is an abellian group

under addition, I is a normal subgroup, and the quotient group R/I is defined as
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{a+ I : ∀a ∈ R}.The elements of R/I are known as cosets of I in R. Addition of

cosets is defined by adding coset representatives:

(a+ I) + (b+ I) = (a+ b) + I for a, b ∈ R.

The zero coset is 0+ I = I,and the additive inverse of a coset is given by −(a+ I) =

(−a) + I However, R also comes with a multiplication,which is defined as R/I is a

ring by multiplying coset representatives:

(a+ I).(b+ I) = ab+ I for a, b ∈ R

The following theorem [32] states that R/I is a ring, known as the quotient ring.

Theorem[32]

If I is a two sided ideal in a ring R , Then R/I has the structure of a ring under

coset addition and multiplication.

An example of a quotient ring is the ring of integers modulo n which is defined as

• Integers modulo n

For a fixed positive integer n, let Zn = {0, 1, . . . , n− 1}, be the set of remainders of

integers modulo n. Under the addition and multiplication modulo n, Zn is a ring,

called the ring of integers modulo n.

We note that the quotient ring Z6 is not an integral domain because the product of

non zero elements 2 and 3 is equal to zero.

As discussed earlier, a principal ideal is defined as,

• Principal ideal

An ideal I in R is called a principal ideal if I is generated by one element, which is

denoted by I = (x) for some x ∈ I.

• Principal ideal domain

A ring is called a principal ideal ring if R is commutative and every ideal of R is

principal. A principal ideal ring which is an integral domain is called a principal

ideal domain (PID).

Thus, a commutative integral domain R is called a principal ideal domain (PID) if

every ideal of R is principal, i.e, generated by one element.

Example The ring of even integers R = 2Z is an example of a PID.

We now define modules over a commutative ring R as follows

• Module

Let R be a Commutative ring. An R-module is a pair (M,µ) where M is an
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abelian group and µ is a mapping of R×M into M such that, if we write rm for

µ(r,m)(r ∈ R,m ∈ M), the following axioms are satisfied:

r(m1 +m2) = rm1 + rm2,

(r1 + r2)m = r1m+ r2m,

(r1r2)m = r1(r2m) and

1m = m(r1, r2, r ∈ R;m1,m2,m ∈ M)

Example

An ideal I of R is an R-module. In particular, R itself is an R-module.

Sub modules and product modules are defined as

• Sub module

A subgroup N of an R-module M is called an R sub module of M if rn ∈ N for every

r ∈ R, n ∈ N .

• Direct product

Let R be any commutative ring and M, N be R-modules, then the Cartesian product

M ×N can be made into an R-module, called the direct product of M and N , in a

natural way, R× (M ×N) −→ M ×N, (a, (x, y)) −→ (ax, ay).

Special cases 1. R2 = R×R.

2. Rn = R×R× . . .×R.

• Generating set

If x is an element of M , the set of all multiples rx(r ∈ R) is a submodule of M ,

denoted by Rx or (x). If M =
∑
i∈I

Rxi ,then xi are said to be a set of generators

of M , i.e, every element of M can be expressed as a finite linear combination of xi

with coefficients in R.

• Free module

An R-module M is called free if M has generators xi such that
∑

aixi = 0 implies

ai = 0 for all i. The set of xi is called a basis, i.e, a generating set consisting of

linearly independent elements of M .

• Rank of a module

The cardinality of any finite generating set or basis is called the rank of module,i.e,

the minimum number of generators (if it exists) of M is called the rank of M .

Example

Every vector space is a free module.A free abelian group is a free module over the

ring Z of integers.
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Next, we give the definitions of ring homomorphism and isomorphism and module

homomorphism and module isomorphism.

• Ring homomorphism and Ring isomorphism

Let R and S be two rings. A homomorphism ϕ from R to S is a map of sets

ϕ : R −→ S such that for all x, y ∈ R

1. ϕ(x+ y) = ϕ(x) + ϕ(y)

2. ϕ(xy) = ϕ(x)ϕ(y)

3. ϕ(1R) = 1S

A ring homomorphism which is a bijection (one-one and onto) is called a ring

isomorphism.

Examples

1.The inclusion Z −→ Q is a ring homomorphism.

2.The map A[X] −→ A sending a polynomial p to p(1) with the coefficients in the

ring A (or, more generally,p −→ p(a) for some a ∈ A) is a ring homomorphism.

• Module Homomorphism and Module Isomorphism

In algebra, a module homomorphism is a function between modules that preserves

the module structures. Explicitly, if M and N are left modules over a ring R, then

a function f : M −→ N is called an R-module homomorphism or an R-linear map

if for any x, y in M and r in R,

f(x+ y) = f(x) + f(y),

f(rx) = rf(x).

A module homomorphism is called a module isomorphism if it is a bijection.

2.3 Preliminaries from Algebraic Geometry

We start this section with the definitions of polyhedral and simplicial complexes. Classically

the splines were defined over these complexes. Later on they were defined on the duals of

simplicial complexes and then on arbitrary graphs.

We begin with the following basic definition of k-simplex and simplicial complex.

• k-Simplex

Let {a0, a1, . . . , ak} be a set of geometrically independent points x in Rn. The

k-dimensional simplex or k-simplex σk spanned by {a0, a1, . . . , ak} is the set of all
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points in Rn, for which there exists non-negative real numbers λ0, λ1, . . . , λk, such

that x = Σk
(i=0)λixi and Σk

(i=0)λi = 1. The numbers λ0, λ1, . . . , λk are the barycentric

coordinates of the point x. The points a0, a1, . . . , ak are the vertices of the simplex

σk. Here we observe that a 0-simplex is a point, a 1-simplex is a closed line segment,

a 2-simplex is a triangle and a 3-simplex is a tetrahedron.

A simplex σk is a face of a simplex σn, k ≤ n, if each vertex of σk is a vertex of

σn. All the faces of σn other than σn itself are called the proper faces of σn. The

simplex σn with the vertices {a0, a1, . . . , an} is denoted by ⟨a0, a1, . . . , an⟩.

Example

The faces of a 2-simplex ⟨a0, a1, a2⟩ are the 2-simplex itself, the 1-simplexes ⟨a0, a1⟩,
⟨a1, a2⟩ and ⟨a0, a2⟩ and the 0-simplexes ⟨a0⟩, ⟨a1⟩ and ⟨a2⟩. Two simplexes σm and

σn are properly joined provided they do not intersect or the intersection σm ∩ σn is

a face of both σm and σn.

• Simplicial Complex

A geometric or simplicial complex is a finite family K of geometric simplexes which

are proper and have the property that each face of a member of K is also a member

of K. The dimension of K is the largest non-negative integer r such that K has a

r-simplex. The union of the members of K with the Euclidean topology is denoted

by | K | and is called the geometric carrier of | K | or the polyhedron associated

with K.

Example

The collection K = {⟨a0⟩, ⟨a1⟩, ⟨a2⟩, ⟨a0a1⟩, ⟨a1a2⟩, ⟨a0a2⟩, ⟨a0a1a2⟩} is a simplicial

complex of dimension 2.

Let X be a topological space. If there is a geometric complex K whose geometric

carrier | K | is homeomorphic to X, then X is said to be a triangulable space

and the complex K is called a triangulation of X. The concept of connectedness

is an equivalence relation in a complex K whose equivalence classes are called the

combinatorial components of K. The complex K is connected if it has only one

combinatorial component.

Next, we give the definition of simplicial isomorphism.

• Simplicial Isomorphism

Let X and Y be any two compact subsets of Rd and Rd
′
respectively. Suppose ∆

and ∆
′
are triangulations of X and Y respectively. A map F : (X,∆) −→ (Y,∆

′
) is

said to be a simplicial map if F maps vertices of ∆ into vertices of ∆
′
, such that

σ = ⟨v0, v1, . . . , vn⟩ is a simplex of ∆ implies F (σ) = ⟨F (v0), F (v1), . . . , F (vn)⟩ is a
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simplex of ∆
′
. A simplicial map F : (X,∆) −→ (Y,∆

′
) is said to be a simplicial

isomorphism if it is invertible.

The concept of affine subspace of a Euclidean space Rd as discussed below was used

by Billera in his work in [15],[17],[18]. By an affine form in Rd, we mean a polynomial

of degree one, i.e, l = a0 + a1x1 + . . .+ adxd where ai ∈ R and (x0, x1, . . . , xd) ∈ Rd.

The points where l vanishes are given by 0 = a0 + a1x1 + . . . + adxd and they

constitute a hyperplane in Rd. Next, we give the generalized concept of simplicial

complexes. A finite region in Rd which is bounded by a finite number of hyperplanes

of Rd is called a convex polytope in Rd. The dimension of a convex polytope P is

the dimension of the smallest affine space of Rd which contains P .

• Polyhedral Complex

A finite collection P of convex polytopes in Rd is said to be a polyhedral complex if

the following conditions are satisfied:

(i) Any face of a member of P is again a member of P .

(ii) The intersection of any two members of P is a face of both the members.

Note that a simplicial complex is a special case of a polyhedral complex where all

the convex polytopes are simplexes. The dimension of the biggest convex polytope

occurring in the polyhedral complex P is called the dimension of P .

In the next section we discuss the work done by L. Billera, L Rose[15],[17],[18], S.

Deo[40] and W. Whitely, where they have used the algebraic approach to solve

the dimension problem related to the vector space generated by the splines over

polyhedral complexes.

2.4 Algebraic approach to dimension problem of

splines over Polyhedral complexes

In order to understand the importance of the dimension problem, we give a brief survey

of the work done by the mathematicians mentioned above, which opened a vast area of

research with unsolved problems to be worked upon. First, we discuss about the vector

space formed by the splines defined over a polyhedral complex.

• Spline Spaces over Polyhedral complex

Let P be a finite d-dimensional polyhedral complex embedded in Rd, i.e, P is a

decomposition of a compact region in Rd into convex polytopes. For a simplicial
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complex, we use the notation ∆. For non-negative integer r we define Sr(P ) to

be the set of all piecewise polynomials on P , which are smooth of order r, i.e, all

functions F : P −→ R, such that

(i) F |σ is a polynomial for each σ ∈ P .

(ii) F is continuously differentiable of order r.

Here R is the polynomial ring R[x1, x2, . . . , xd].

Such functions are called splines.The set of all such splines over P is denoted by

Sr(P ), where as Sr
k(P ) denotes the subset of Sr(P ), consisting of functions involving

polynomials of degree at most k.

In this definition, F will be differentiable of order r at a point p ∈ P if, for all

d-faces σ ∈ P containing p, all partial derivatives of F |σ upto order r agree at p. We

will see that the differentiability condition on F translates into a purely algebraic

condition, which is extensively used in the study of Sr(P ).

We now discuss some properties of Sr(P ) and Sr
k(P ). Given an ordering σ1, σ2, . . . , σt

of the d-dimensional faces of P , F ∈ Sr(P ) can be represented as a t-tuple of

polynomials in R = R[x1, x2, . . . , xd], i.e, F = (f1, f2, . . . , ft), where each fi is F |σi
.

Thus Sr(P ) can be regarded as a subring of the product ring Rt = R×R× . . .×R

(t-copies), with respect to pointwise operations of addition and multiplication. The

set Sr
k(P ) forms a finite dimensional vector space over R.

The problem of finding the dimension and computing a basis for Sr
k(P ) was first

formally introduced by G. Strang [99], who traced it’s history to a paper of R.

Courant[30]. L. Billera and L. Rose wrote a series of papers [15],[16],[17],[18],[93] in

which they have covered some of the important aspects of the dimension problem

with the methods used from commutative and homological algebra. This led to the

algebraization of the set Sr(P ), which we explain below.First we discuss the zero

set of a set of polynomials and the ideal of a subset of Rd.

If T ⊂ R is any set of polynomials, the zero set of T is defined as Z(T ) = {p ∈
Rd, f(p) = 0 for all f ∈ T }. If X ⊂ Rd is any set, then the ideal of X is defined

as I(X) = {f ∈ R : f(p) = 0,for all p ∈ X} . Next, we give the algebraic criterion,

which algebraizes the concept of smoothness of spline functions.

• Algebraic Criterion

Let P be a d-complex and let F : P −→ Rt be a piecewise polynomial function.

Then F ∈ Sr(P ) if and only if, for every pair of d- faces σ1, σ2 in P, F |(σ1) − F |(σ2)

lies in I(σ1 ∩ σ2)
(r+1).
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Now, as mentioned earlier, Sr(P ) is a subring of the product ring Rt with the

operations of pointwise addition and multiplication, i.e.,

(f1, f2, . . . , ft) + (g1, g2, . . . , gt) = (f1 + g1, . . . , ft + gt)

(f1, f2, . . . , ft).(g1, g2, . . . , gt) = (f1.g1, . . . , ft.gt)

Here we observe that (f1.g1, . . . , ft.gt) ∈ Sr(P ), for figi−fjgj = fi(gi−gj)−gj(fi−fj)

which lies in I(σ1 ∩ σ2)
(r+1) by algebraic criterion.

In addition to the above operations, if scalar multiplication is defined as

g.(f1, f2, . . . , ft) = (g.f1, g.f2, . . . , g.ft), then Sr(P ) becomes a submodule of Rt, the

free R-module of rank t.

As discussed earlier, Billera [15] pioneered the work on algebraic splines with the

methods from commutative and homological algebra, in order to prove a conjecture

made by Strang [99], regarding the dimension of C1
k(P ), for a planar simplicial com-

plex P. Further, mathematicians such as Schumaker, Billera and Rose, McDonald

and Schenck [94],[3], [17],[18] extended the study to piecewise polynomials over poly-

hedral complexes and in abstract algebraic settings studied the invariants of modules

such as freeness, computing coefficients of Hilbert Polynomials, identifying syzygies

of the span of edge ideals or analyzing algebraic varieties associated to the piecewise

polynomials. Billera and Rose [17] defined the piecewise polynomials over the dual

graphs of the polyhedral complexes which were found to be equivalent to the piecewise

polynomials defined over the hereditary complexes. Goresky–Kottwitz–MacPherson

[58] developed the GKM theory, which builds a graph GX whose vertices are the

T -fixed points of X and edges are the one dimensional orbits of X. Each edge in

this graph is associated with a principal ideal ⟨αe⟩ in a polynomial ring. With

this as the starting point, S. Gilbert, S. Polster and J. Tymoczo [55] defined the

generalized splines over arbitrary graphs which allowed to extend the study forward

and establish results which were not possible from algebraic perspective. Considering

a graph whose edges were labeled with the ideals of a commutative ring R with

identity, edge labeled graphs and generalized splines were defined as follows

• Edge labeled graphs[55]

Let G = (V,E) be a graph. Let R be an arbitrary commutative ring with identity

which is also an integral domain and let I denote the set of all non-zero ideals of R.

Let a function α : E −→ I be an edge labeling function defined on G,where α labels

each edge in graph G by the ideals of the ring R. Then the graph G with function α

is called an edge labeled graph which is denoted by (G,α).
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The compatibility condition defined on the edges and the generalized splines were

defined by imposing the compatibility or the GKM condition at all the edges of the

graph.

• Generalized Splines [55]

Let G = (V,E) be a graph of order n. Let R be a commutative ring and let I

denote the set of all ideals of R. Let α : E −→ I be an edge labeling. A generalized

spline defined over (G,α) is a vertex labeling F : V −→ R such that for each edge

uv, F (u)− F (v) ∈ α(uv) where F (u) ∈ R for each vertex u in V .This condition

is known as edge condition or GKM condition[58],[55] satisfied by the generalized

splines over the edges of the graph G. The set of generalized splines defined over G

is denoted by R(G,α). If the edge labeling is clear, it is denoted as RG.

It has been proved that R(G,α) is a ring in Proposition 2.4 in [55].

• Theorem[55]

RG is a ring with identity 1 defined by 1v = 1 for each vertex v ∈ V .

Proof By definition RG is a subset of the product ring
⊕

v∈V R, so we need

only confirm that the identity is in RG and that RG is closed under addition and

multiplication. The operations are component-wise addition and multiplication since

RG is in
⊕

v∈V R.The identity in
⊕

v∈V R is the generalized spline 1 defined by 1v

= 1 for each vertex v ∈ V . This satisfies the GKM condition at each edge because

for every edge e = uv we have 1u − 1v = 0 and 0 is in each ideal α(e). The set RG

is closed under addition because if p, q ∈ RG then for each edge e = uv we have

(p+ q)u − (p+ q)v = (pu + qu)− (pv + qv) = (pu − pv) + (qu − qv) which is in α(e) by

the GKM condition. Similarly, the set RG is closed under multiplication because

if p, q ∈ RG then for each edge e = uv we have (pq)u − (pq)v = (puqu) − (pvqv) =

(puqu − pvqu) + (pvqu − pvqv) = qu(pu − pv) + pv(qu − qv) which is in α(e) by the

GKM condition.

It is proved [55] that RG becomes a module over the ring R with the operation of

coordinate-wise addition and scalar multiplication where multiplication by r ∈ R,

gives the element rp = (rpv1 , rpv2 , . . . , rpvn) ∈ RG.

Figures 1.3 and 1.4 in chapter1 (discussed in [55]) are two examples of the ring

of generalized splines RC4 and RK4 , defined on the 4-cycle C4 and the complete

graph K4. Here, R is any commutative ring with identity and (αe) denotes the ideal

generated by the single ring element of R. Thus, p = (0, α1α4, (α1 + α2)α4, (α1 +

α2 + α3)α4) = (pv1 , pv2 , pv3 , pv4) represents a generalized spline for C4, because

the difference pv2 − pv1 = α1α4 ∈ (α1), and similarly for other adjacent vertices.

Another example giving a generalized spline for the complete graph K4 is given
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in Fig.1.4 in chapter 1. Once again, a generalized spline on K4 will be written

as p = (0, α1α4α5α6, α1α4α5α6 + α2α4α5α6, α1α4α5α6 + α2α4α5α6 + α3α4α5α6) =

(pv1 , pv2 , pv3 , pv4) which satisfies the edge conditions for all pairs of adjacent vertices.

The following theorem proved in [55] gives the construction of non trivial generalised

splines over the cycle graph Cn for any n.

• Theorem[55]

Let Cn be a finite edge labeled cycle, given by vertices v1,v2,. . .,vn in order. Define

the vector p ∈ R|V | with

pv1

pv2

pv3
...
...
...

pvn−1

pvn


=



1

1

1
...
...
...

1

1


+ α1,n



0 0 . . . 0 0

1 0 . . . 0 0

1 1 . . . 0 0
...

... . . .
...

...
...

... . . .
...

...
...

... . . .
...

...

1 1 . . . 1 0

1 1 . . . 1 1


+



α1,2

α2,3

α3,4

...

...

...

αn−2,n−1

αn−1,n


with arbitrary choices of pv1 ∈ R, αi,i+1 ∈ α(ei,i+1), and α1,n ∈ α(e1,n). Then p is a

generalized spline for Cn. The spline p is nontrivial exactly when α1,n and at least

one of the αi,i+1 are non-zero.

In fact, if it can be written in the form

pv1

pv2

pv3
...
...
...

pvn−1

pvn


=



1

1

1
...
...
...

1

1


+ α1,nα1,2



0

1

1
...
...
...

1

1


+ α1,nα2,3



0

0

1
...
...
...

1

1


+ . . .+ α1,nαn−1,n



0

0

0
...
...
...

0

1


with coefficients pv1 ∈ R and αi,i+1 ∈ α(ei,i+1) = Ii,i+1 for all 1 ≤ i ≤ n− 1.

The vectors [1, 1, 1, . . . , 1]T , [1, 1, 1, . . . , 0]T , . . . , [1, 0, . . . , 0, 0, 0]T are linearly inde-

pendent in Rn but are not necessarily elements of RCn .

If R is an integral domain then for fixed choices of αi,j ∈ α(ei,j) = Ii,j, the vec-

tors [1, 1, 1, . . . , 1]T , α1,nα1,2[1, 1, . . . , 1, 0]
T , . . . , α1,nαn−1,n[1, 0, . . . , 0, 0, 0]

T are both

linearly independent and in RCn .
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The GKM condition, as given in [55] for the

complete graph K4, Fig.1.3 in chapter1[55], whose edge labels are all principal ideals

α(e) are given as

pv1 − pv2 ∈ α(e1,2) = ⟨α1⟩
pv1 − pv3 ∈ α(e1,3) = ⟨α5⟩
pv1 − pv4 ∈ α(e1,4) = ⟨α4⟩
pv2 − pv3 ∈ α(e2,3) = ⟨α2⟩
pv2 − pv4 ∈ α(e2,4) = ⟨α6⟩
pv3 − pv4 ∈ α(e3,4) = ⟨α3⟩
Where p = (pv1 , pv2 , pv3 , pv4) is a generalized spline in K4.

Further, Gilbert et. al.[55] have given the corollary (5.2) for the existence of flow-up

basis for the generalized spline modules over an arbitrary edge labeled graph G,

whenever the base ring R is a Principal ideal domain, which is as follows

• Corollary[55]

Let R be an integral domain and (G,α) a connected edge–labeled graph on n vertices.

Then RG contains a free R-submodule of rank n.

The next corollary (5.4) from [55]is very important with respect to our work. It is

as follows

• Corollary[55]

If G contains any subgraph G
′
for which RG′ contains a nontrivial generalized

spline,then RG also contains a nontrivial generalized spline.

The above corollary is used to construct the generalized splines for the edge labeled

graph (K4, α), using the generalized splines for the graph (C4, α), as C4 is a subgraph

of K4. The construction is as given in the following example:

• Example[55]

Fig. 2.1: GKM Conditions for K4 whose ideals are all principal
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We can construct generalized splines for the edge–labeled graph (K4, α) given in

Fig.2.1 [55] using these corollaries. Let C4 denote the Hamiltonian cycle determined

by ordering the vertices v1, v2, v3, v4. Let

NC4 = lcm{α(v1v3), α(v2v4)} with the labeling in Fig.2.1.

p =


0

α(v1, v4)α(v1, v2)

α(v1, v4)(α(v1, v2) + α(v2, v3))

α(v1, v4)(α(v1, v2) + α(v2, v3) + α(v3, v4))

 =


0

α4α1

α4(α1 + α2)

α4(α1 + α2 + α3)


The corollaries show that the multiple NC4 .p is a generalized spline for K4.

We have constructed the generalized splines for the complete graph Kn for any

n ≥ 4, the complete bipartite graphs Kn1,n2 , for n1, n2 ≥ 0 and for hypercubes Qn

for any n.

Further, the isomorphism for edge labeled graphs is defined in [55]as

• Isomorphism in Edge labeled Graphs [55]

Let (G,α) and (G
′
, α′) be edge labeled graphs and R be a commutative ring. A

homomorphism of edge labeled graphs ϕ : (G,α) −→ (G
′
, α

′
) is a graph homomor-

phism ϕ1 : G −→ G
′
together with a ring automorphism ϕ2 : R −→ R, so that for

each edge e ∈ EG, we have ϕ2(α(e)) = α
′
(ϕ1(e)).

E
G

E
G’

Φ1

Φ2

I I

α α’

An isomorphism of edge–labeled graphs is a homomorphism of edge–labeled graphs

whose underlying graph homomorphism is an isomorphism.

The isomorphism of edge labeled graphs also establishes the isomorphism between

the generalized spline rings as is proved in Proposition 2.7 in [55]

• Proposition[55]

If ϕ : (G,α) −→ (G
′
, α

′
) is an isomorphism of edge–labeled graphs then ϕ induces

an isomorphism of the corresponding rings of generalized splines ϕ∗ : RG −→ RG′

defined as ϕ∗(p)ϕ1(u)
= ϕ2(pu) for each u ∈ VG.

Further, a special type of splines called the flow-up classes was introduced by

Handschy, Melnick and Reindeer in [63], which was used to find module bases for

R(G,α) .The flow-up class is defined as
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• Flow-up Class [8]

A flow-up class F (i) on an edge labeled graph with n vertices where 1 ≤ i ≤ n, is a

special class of generalized splines in R(G,α), with the components F
(i)
i ≠ 0 and F

(i)
j

= 0 for all j < i. The spline in the flow-up class contains (i− 1) leading zeroes.The

set of all i-th flow-up classes is denoted by F i.

As discussed in [7], an example of flow up classes on the graph G, with the edge

labeling as shown in Fig.2.2.

Fig. 2.2: Example of flow-up spline

Let (G,α) be as in the Fig.2.4. Example of flow-up classes on (G,α) can be given

as F (1) =

11
1

, F (2) =

−x− 2

x

0

, F (3) =

x
2 + 3x+ 2

0

0


N.Bowden,S.Hagen, M.King and S.Reinders in [20] has proved the following theorem

• Theorem[20]

Let R be the ring of integers and (G,α) be an edge labeled graph with n vertices.

The following statements are equivalent

(a) The set {F (1), F (2), . . . , F (n)} forms a flow-up basis for R(G,α).

(b) For each flow-up class G(i) = (0, . . . , 0, gi, gi+1, . . . , gn), the entry gi is a multiple

of the entries in F
(i)
i .

As it is easy to check the existence of the flow-up classes and the above theorem

gives the importance of the leading entries of these classes in determining whether

they form a basis.

Selma Altinok and Samet Sarioglan [7], has introduced trails known as the zero

trails in an edge labeled graph, which were used for determining the leading entries

of flow-up classes over an integral domain R. The trails and zero trails were defined

as

• Zero Trails[7]

Let G = (V,E) be a graph with an edge labeling α. Let u, v ∈ V . A u− v trail in



Chapter 2. Preliminaries 28

G is an alternating sequence T = ( u = vi0 , ei1 , vi1 , . . . , eik ,vik = v) of vertices and

edges such that eij = vi(j−1)vij and all the edges in T are distinct. If α(eij) = lij,

then the trail T is denoted by li1 , li2 ,. . .,lik . If vik = 0, then T is called a zero trail

and is denoted by T (u,0). Also, gcd and lcm of { li1 , li2 ,. . ., lik} are denoted by

( T ) = ( li1 , li2 , . . . , lik) and [ T ] = [ li1 , li2 ,. . ., lik ] respectively.

They have given the following example of zero trails

• Example[7]:

Fig. 2.3: Zero Trails

Let (G1,α) be the edge labeled graph (Fig.2.3) and (0, 0, f3, f4, f5) ∈ F (3), where

F (3) is the flow-up class as discussed before. The zero trails of v3, which is labeled

as f3 are shown as red and blue lines in Fig.2.3.

The zero trails of v3 are listed below: p
(3,0)
1 = l7l4, p

(3,0)
2 = l7l5l3, p

(3,0)
3 = l7l5l2, p

(3,0)
4 =

l6l3, p
(3,0)
5 = l6l2, p

(3,0)
6 = l6l5l4

The set of all greatest common divisors of zero trails of v3 is given as: {(p(3,0))} =

{(l7, l4), (l7, l5, l3), (l7, l5, l2), (l6, l3), (l6, l2), (l6, l5, l4)}.

Consider the spline conditions induced by zero trails. For instance, for the zero trail

l7l4, we have the following conditions.

f3 ≡ f5 mod l7,

f5 ≡ 0 mod l4.

It implies that f5 = k4l4 and f3 = f5 + k7l7 = k4l4 + k7l7 for some k4, k7 ∈ R.

Hence (l7, l4) divides k4l4+k7l7 = f3. This holds also for other zero trails of v3.Selma

Altinok and Samet Sarioglan have proved the following important theorem showing

the existence of flow-up classes over a graph G, whenever R is a PID.

• Theorem[7]

Let (G,α) has n vertices and R be a PID. Fix vi with i > 1 and assume that all
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vertices vj with j < i are labeled by zero. Then a flow-up class F (i) exists with the

first nonzero entry fi = [p(i,0)]

A corollary to this theorem (corollary 3.9) is

• Corollary[7]

Let (G,α) be an edge labeled graph with n vertices. If the base ring R is a PID, then

there exists a flow-up basis {F (1), . . . , F (n)} where F
(i)
i = [{(p(i,0))}] for 1 < i ≤ n

and F (1) = (1, . . . , 1).

Although, the zero trail method cannot be used for huge graphs, but a basis criteria

for a set of spline modules to become a basis for RG is given by them in [7].

First, we discuss the matrix form of a set of splines in R(G,α).

Let (G,α) be an edge labeled graph with n-vertices. Let A = {F1, . . . , Fn} ∈ R(G,α)

with Fi =(fi1 , . . . , fin). We can rewrite A in a matrix form, whose columns are the

elements of A such as

A =


f1n f2n . . . fnn
...

f12 f22 . . . fn2

f11 f21 . . . fn1


and determinant | A | is denoted by | F1F2 . . . Fn |. Selma Altinok and Samet

Sarioglan have given basis criteria for R(G,α) by using this determinant.They have

defined the element QG ∈ R as follows

• QG for an edge labeled graph G [8]

Let (G,α) be an edge labeled graph with k vertices. Fix a vertex vi on (G,α) with

i ≥ 2. Label all vertices vj with j < i by zero. By using the notations in [8]. QG

is defined as QG =
∏k

i=2[ {( p
(i,0)
t ) }|t = 1, . . . ,mi] ,where p

(i,0)
t are zero trails of vi

and mi is the number of the zero trails of vi.

With the above definition of QG, QCn for the cycle graph Cn is computed and also

basis criteria for R(Cn,α) are given by Selma Altinok and Samet Sarioglan[8]. They

have given the basis criterion for the module R(G,α), for G to be tree graph over a

GCD domain R using the determinantal techniques and flow-up basis. These results

given by them in [8] are as follows

• Lemma[8]

Let (Cn, α) be an edge labeled n-cycle. Then

QCn =
l1l2 . . . ln

(l1, l2, . . . , ln)
where l1, l2, . . . , ln are edge labels of the cycle graph Cn.
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• Theorem [8])

Let (Cn,α) be an edge labeled n-cycle and let {F1, . . . , Fn} ⊂ R(Cn,α). Then

{F1, . . . , Fn} forms a basis for R(Cn,α) if and only if | F1F2 . . . Fn | = r·QCn , where r

∈ R is a unit.

Here, the set | F1F2 . . . Fn | represents the determinant of the matrix notation of the

set {F1, F2, . . . , Fn}.

The formularizing of QG for a tree graph G is

• Lemma [8]

Let G be a tree with n vertices and k edges. Then QG = l1 . . . lk where l1, l2, . . . , lk

represent the edge labels.

The following theorem in [8] gives the basis criterion for the module R(G,α) for G to

be a tree graph, over a GCD domain R

• Theorem [8]

Let G be a tree with n vertices and k edges. Then {F1, . . . , Fn} ⊂ R(G,α) forms a

basis for R(G,α) if and only if | F1F2 . . . Fn |= r ·QG where r ∈ R is a unit and R is

a GCD domain.

They have also given the basis criteria for the graphs obtained by joining cycles,

diamonds and trees along common cut vertices as in the following theorem

• Corollary [8]

Let {G1, . . . , Gk} be a collection of cycles, diamond graphs and trees and let G be a

graph obtained by joining G1, . . . , Gk together along common vertices which are cut

vertices in G. Then {F1,...,Fn} ⊂ R(G,α) forms a basis for R(G,α) if and only if

| F1F2 . . . Fn | = r· QG1 . . . QGk
, where r ∈ R is a unit.

As we know that flow-up bases exists for R(G,α) over an arbitrary graph G, whenever

the base ring is a PID, the following result in [8] follows

• Theorem[8]

Let (G,α) be an edge labeled graph with n vertices and R be a PID. Then

{F1, . . . , Fn} ⊂ R(G,α) forms a module basis for R(Gα) if and only if | F1F2 . . . Fn | =
r.QG, where R is a GCD domain and r ∈ R is a unit.

Selma Altinok and Samet Sarioglan have given the following conjecture in [8] for an

arbitrary graph G over R to be a GCD domain.

• Conjencture[8]

Let (G,α) be any edge labeled graph with n vertices. Then {F1, . . . Fn} ⊂ R(G,α)
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forms a module basis for R(G,α) if and only if | F1F2 . . . Fn | = r.QG where r ∈ R is

a unit.

In our work, we have extended the results of Selma Altinok and Samet Sarioglan to

obtain the basis criteria over the Dutch windmill graph and it’s special cases such

as Friendship graph and Butterfly graph, over a GCD domain, by using the zero

trail method and the basis criteria for the spline modules.

We have seen that if two graphs are isomorphic then the zero trails of their vertices

are identical.As a result we have concluded that isomorphic graphs have equivalent

bases and basis criteria, whenever generalized modules on these graphs are free

or generating sets exist.The result does not have strong implications for arbitrary

graphs over GCD domains as no polynomial-time algorithm exists for checking the

isomorphism between graphs in general.However,as AHU algorithm exists for tree

graph isomorphisms, our results are generalized over ordered rooted tree graphs

which form a very important class of graphs in Computer Network Theory.

We now discuss the AHU algorithm for the isomorphism in trees.

• AHU Algorithm[25]

This algorithm determines tree isomorphism in time O(| V |) by associating a tuple

with each vertex of a tree that describes the complete history of its descendants.

The AHU [25] algorithm is a serialization technique for representing the vertices

of a tree as unique string and is able to capture a complete history of a tree’s

degree spectrum and structure, ensuring a deterministic method of checking tree

isomorphisms.In this algorithm, leaf nodes are assigned with a parenthesis ”()”.

Every time we move upwards, we combine, sort and wrap the parentheses.

A (( ) (( ) ( )) ( ))

F G

D( )
C (( ) ( ))

B

E

(( ))

( ) ( ) ( )

Fig. 2.4: Encoded ordered rooted tree using the AHU Algorithm

We can’t process a node until we have processed all its children. We particularly

consider the rooted trees because root of a tree represents the “start” of the data.

Another important information assigned to the rooted trees is the ordering of the

children (from left to right). Such a tree is called an ordered rooted tree.For example,

suppose we have a tree with a single parent and two leaf nodes. So we assign ”()” to
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A 11011000

C 1100B 10

D 10

A 11011000

B 1100 C 10

D 10

Fig. 2.5: Two isomorphic trees with same canonical names

the leaves. When we move towards the parent node, we combine the parentheses of

leaves like ”()()” and wrap it in another pair of parentheses like ”(()())” and assign

it to the parent. This process continues iteratively until we reach the root node

[Fig.2.4].We can encode any ordered rooted tree by assigning a string of 0’s and 1’s,

which uniquely determine the tree by using the AHU algorithm. In AHU algorithm,

parenthetical tuples are assigned to all tree vertices. However, these parenthetical

tuples have no ordering. Replacing “(“ with “1” and “)” with “0”, the parenthetical

names are converted into canonical names, which can be sorted lexicographically.

Next we give the definition of isomorphism in ordered rooted trees.

• Isomorphism in ordered rooted trees[1]

Two ordered rooted trees are isomorphic if there exists an isomorphism of rooted

trees, such that it preserves the order of children of every vertex.The trees shown in

Fig.2.5 are isomorphic.

As discussed earlier, Gilbert et.al [55] has used the GKM matrix to describe all

generalized splines for trees, for R to be a PID. The theorem 4.1 given by them is

• Theorem [55]

Let T = (V,E, α) be a finite edge–labeled tree. The tuple p ∈ R|T | is a generalized

spline p ∈ R|T | if and only if given any two vertices vi, vj ∈ V we may write pvj =

pvi + αi,i1 + . . .+ αim−1,im + αim,j for some αl,k ∈ αel,k = Il,k where vi, vi1 , . . . , vim , vj

are the vertices in the unique path connecting vi and vj in the tree T. Furthermore

p is non-trivial if and only if at least one of the αl,k is nonzero.

We have given an algorithm for indexing the vertices of an ordered rooted tree graph,

which helps us in constructing the flow-up basis for such graphs and it’s isomorphic

graphs using the basis criteria for the spline modules for tree graphs over GCD

domains.
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We know from Gilbert’s work [55] that the module of splines over a domain contains

a free submodule of rank at least the number of vertices in the graph G and over

a PID the module is always free with rank equal to the number of vertices. N

Bowden and J. Tymokzko [21] have shown that a very different phenomena emerges

if the base ring is considered as the quotient ring Z/mZ, which is not a domain.

The spline modules over Z/mZ are finite and hence have minimum generating sets,

i.e, generating sets having the smallest number of elements. It follows from the

structure theorem of finite abelian groups that finite modules may not be free but

these minimum generating sets function as the bases except that each element b

in the minimum generating set has a scalar cb, such that cb.b = 0. The rank of

Z-modules is defined as the number of elements in the minimum generating set.

Bowden and Tymokzko [21] have shown that the rank of modules over Z/mZ is

smaller than that expected. They have given the following theorem.

• Theorem[21]

Suppose that G is a graph with n vertices. Both over the integers and over the ring

Z/mZ the maximum rank of a ring of splines RG is n.

The next result[21] given by them constructs the modules with any rank k, 0 ≤ k ≤ n,

where n is the number of vertices in the graph G.

• Theorem[21]

If m has at least two distinct prime factors then for each n ≥ 2 and each i with

2 ≤ i ≤ n there exists an edge-labeled graph G on n vertices with rk RG = i.

The following result and it’s corollary is proved in [21], characterizes the module of

splines over the ring Z/(pkZ), for a prime p.

• Theorem[21]

Fix a zero divisor a in Z/mZ. Suppose all of the edges of Cn are labeled with powers

of a so the set of edge labels is {ak1 , ak2 , ak3 , . . . , akn}. Without loss of generality

assume that ak1 is the minimal power in the set and that ak1 is the label on edge ln.

Then the following set generates all splines on Cn.

B =





1

1

1
...

1

1





l1

l1
...

l1

l1

0





l2
...

l2

l2

0

0


. . .



li

li
...

li

0

0


. . .



ln−2

ln−2

...

0

0

0





ln−1

0
...

0

0

0




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• Corollary[21]

Let Cn be the cycle on n vertices, let p be a prime number and let k be any

positive integer. Then the splines on Cn over Z/pkZ are generated by the minimum

generating set B in the above Theorem.

The next theorem in the same paper characterizes the spline modules over the

quotient ring Z/mZ, where m is as given in the theorem

Fig. 2.6: Labeling conventions for general n-cycles

• Theorem[21]

Let Cn be labeled as in Fig.2.6. Fix m,m1,m2 such that m1 ̸= m2 and lcm

(m1,m2) = m. Assume every edge of Cn is labeled with either m1 or m2 and that

both m1 and m2 appear as edge labels at least once. Then the following set B is a

flow-up generating set for RCn

B =





1

1

1
...

1

1





z1

l1
...

l1

l1

0





z2
...

l2

l2

0

0


. . .



zi

li
...

li

0

0


. . .



zn−2

ln−2

...

0

0

0




where zi = 0 if li = m2 and zi = li if li = m1


