
Chapter 3

An Algorithm for Generating

Generalized Spline Modules on

Graphs such as Complete graphs,

Complete Bipartite Graphs and

Hypercubes

3.1 Introduction

Gilbert, Juliana and Tymoczko [55] have expanded the family of objects on which the

splines were defined to arbitrary graphs, labeling the edges of the graph by ideals of a

commutative ring R. The splines were defined as the vertex labelings of the graph by

the elements of R, such that the difference between the vertex labels of two adjacent

vertices belonged to the corresponding edge label and have called these as generalized

splines. Further they showed that the set of generalized splines formed a ring with the

pointwise operations of addition and multiplication, inherited as a subring of the product

ring Rt, for a commutative ring R. They have also proved the foundational result that

nontrivial generalized splines can be defined over arbitrary graphs and have analyzed

the ring of generalized rings for trees and cycle graphs. Several important results were

proved in the subsequent research work carried out by Nealy Bowden and Julianna

Tymoczko[21],Handschy, Julie Melnick and Stephanie Reinders[63], Bowden, Sarah Hagen,

Melanie King, and Stephanie Reinders[20],etc. However, most of the research was focussed

on the choice of particular family of graphs on which these splines were defined or specific
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rings such as integer rings or quotient rings. Questions regarding the identification of

generalized spline rings on other families of graphs were left open. In this chapter, we

have extended their study further, and have constructed the ring of generalized splines for

the special graphs G, where G is a complete graph Kn, n ≥ 4 , complete bipartite graph

Kn1,n2 , where (n1, n2) ∈ N and also the hypercube Qn,where n ≥ 1 . The ring R is the

commutative ring with identity, which is also an integral domain. We have also obtained

the algorithms for generating the generalized splines for the above mentioned graphs and

developed python codes for writing down these splines. The bipartite structure [52] and

the hamiltonicity [49] of hypercubes are used to find the general algorithm to write down

the generalized splines in RQn , for any n.

In the next section, we give the important definitions and results that we have used in the

results we have obtained.

3.2 Preliminaries

In this sub section, we give the fundamental results which describe the algebraic structure

of the ring RG, along with examples, which are used to construct new generalized splines

for the complete graphs, complete bipartite graphs and hypercubes.The set of generalized

splines on an edge labeled graph has a ring structure and R-module structure like classical

splines. Gilbert, Polster and Tymoczko [55] proved some crucial results about the set

of generalized splines, completely analysing the ring of generalized splines for trees.

They discussed about the generalized spline ring RG, for an arbitrary graph G over a

commutative ring R, with the edge labels as the non-zero ideals of the ring R, in [55].They

have obtained the generalized splines for arbitrary cycles and have shown that the study

of generalized splines for arbitrary graphs can be reduced to the case of different sub

graphs, especially cycles or trees.

Refering the definition of edge labeled graphs in chapter 2, the ring of generalized splines

are defined as

• Ring of Generalized splines

Let (G,α) be an edge–labeled graph. The ring of generalized splines is R(G,α) =

{p ∈
⊕

v∈V R such that p satisfies the GKM condition at each edge e ∈ E}. Each
element of R(G,α) is called a generalized spline. When there is no risk of confusion,

we write RG.

The definition of non-trivial generalized spline is as follows:
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• Definition[55]:

A nontrivial generalized spline is an element p ∈ RG, that is not in the principal

ideal R1, where 1 is the identity element in RG defined as 1 = (1, 1, . . ., 1).

Basic problems that arise naturally in the theory of generalized splines is that it

focuses on particular examples ,e.g, a particular choice of the ring R, the graph G

and the edge labeling function α which maps the edges to the ideals of the ring

R. Also, the module structure of the ring of generalized splines remains far from

being understood in terms of freeness and existence of basis or generating set, for

an arbitrary choice of the ring R[55]. Another aspect of the generalized spline ring

which is not clear is how the ring RG will be affected under the graph theoretic

constructions such as addition or deletion of vertices. Exploring into these open areas,

we could extend the study further and addressed the open question posed by Simcha

Gilbert, Shira Polster and Juliana Tymoczko in [55]. We have constructed the ring of

generalized splines for the special cases, where G is a complete graph Kn, complete

bipartite graph Kn1,n2 and also for the hypercubes Qn. In all these graphs,the ring

R is a commutative ring with identity which is also an integral domain and the edge

labels are the non-zero ideals of the ring R. Also, the methods of constructing the

generalized splines over the complete graphs Kn(for any n) and complete bipartite

graphs Kn1,n2 (for any n1, n2) have been generalized and Python code is developed

to write these splines. The bipartite structure[52] and Hamiltonicity[49] of the

hypercubes are used to find the general algorithm for writing the set of generalized

splines RQn (for any n). We first discuss the example of generalized spline ring RC3

over the ring of integers for the cycle graph C3.

Fig. 3.1: Example of generalized integer spline on cycle graph C3[47]



Chapter 3. An Algorithm for Generating Generalized Spline Modules on Graphs such as
Complete graphs, Complete Bipartite Graphs and Hypercubes 38

• Example of generalized integer spline on cycle graph C3[47]

Let the generalized integer spline f = (f1, f2, f3) ∈ RC3 , where C3 is a 3-cycle with

the edge labels a1,a2,a3 where a1,a2 and a3 are integers.

The vertex labels (f1, f2, f3) belonging to Z× Z× Z satisfy the following conditions

f1 ≡ f2 mod a1,

f2 ≡ f3 mod a2 and

f3 ≡ f1 mod a3 .

Some of the important results for the generalized spline ring RG, relevant to our work are

mentioned in this subsection.We will refer to the preliminaries in the following subsection,

throughout this chapter.The first result which is a corollary 5.4 to theorem 5.1 in [55],we

get the condition for a generalized spline ring RG to contain a non trivial generalized

spline in terms of the generalized spline ring RG′ where G
′
is a subgroup of G.It is as

follows

• Corollary[55]

If G contains any subgraph G
′
for which RG′ contains a non-trivial generalized

spline,then RG also contains a nontrivial generalized spline.

• Corollary[55]

Let R be an integral domain. If the graph G contains at least two vertices, then RG

contains a nontrivial generalized spline.

With these and some results of [55], discussed in chapter 2, we obtain the generalized

splines for the cycle graph C3 which is also the complete graph K3, to identify the

generalized splines for the complete graph Kn, for n ≥ 4.

Fig. 3.2: Generalized spline on K3
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• Generalized splines for Complete graphs,Kn, n ≥ 3

Let us first consider the non-trivial generalized splines for complete graphK3 [Fig.3.2].

Here the edges (v1, v2), (v2, v3) and (v3, v1) of the graph K3 are labeled with the

non-zero ideals A(1, 2), A(2, 3) and A(3, 1) respectively of the ring R, when R is an

integral domain.

It follows from Theorem 3.8 in [55], a generalized spline pK3 on the complete graph

K3 is

pK3 =

 0

α(1, 2)α(1, 3)

(α(1, 2) + α(2, 3))α(1, 3)

 =

pv1pv2

pv3


Here we see that pK3 satisfies the edge conditions on K3, because if the vertices vi

and vj are adjacent, then pvi − pvj ∈ A(i, j),as α(i, j) is a factor of pvi − pvj . Here

α(i, j) represents generator of the edge ideal A(i, j). Let RK3 denote the set of all

generalised splines of (K3, α). Since R is an integral domain and each α(i, j) is not

equal to zero, RK3 contains nontrivial generalized splines. Using the above result, we

have generated the algorithm for developing the generalized spline for the complete

graph Kn, for any n ≥ 4.We first construct Kn from Kn−1 by adding a new vertex

vn to Kn−1 and then join this new vertex to the existing vertices v1, v2, . . . , vn−1 of

Kn−1.

Also, we will be using the edge conditions to identify the ring RG, where graph G is

complete bipartite graph Kn1,n2 , for any n1 and n2.

We have generated the algorithms for developing the generalized splines for complete

graph Kn, for n ≥ 4 and for complete bipartite graphs with the vertex sets V1

containing n1 vertices and V2 containing n2 vertices. We have used similar notations

as above, where we denote the edge ideal corresponding to the edge joining the ith

and jth vertices by A(i, j) and α(i, j) represents an element of the non-zero ideal

A(i, j).We have also obtained the python codes for writing the generalized splines

for the complete graphs and complete bipartite graphs.

We have extended the method of writing algorithm for the generalized splines to

hypercubes, Qn, for n ≥ 2 using the bipartite nature and hamiltonicity of the

hypercubes, which find extensive use in coding theory. Hypercubes, denoted by Qn,

are graphs which find extensive use in coding theory in Computer Science and other

areas of Mathematics.
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3.3 Results and Discussions

Results and Discussions[47]

In this section, we first extend the method of constructing the ring of generalized splines

RKn , for any n ≥ 4, starting with the ring RK3 for the complete graph K3. In order to

get the graph Kn, we add a new vertex to the graph Kn−1 and join the new vertex to the

existing n− 1 vertices in Kn−1. In the following constructions we consider the ring R to

be a commutative ring with identity and also an integral domain. First we construct the

graph K4 from the graph K3 and obtain the ring of generalized splines RK4 from the ring

RK3 .

Fig. 3.3: Generalized spline on K4[47]

We add the vertex v4 to K3 (Fig.3.3) and join the new vertex v4 with the vertices v1,v2,v3

of K3. The new edges are labeled with the non-zero ideals A(4, 1), A(4, 2), A(4, 3) of

integral domain R and α(4, 1), α(4, 2), α(4, 3) are the generators of the of the respective

edge ideals. It can be seen that every vertex label for pK3 ∈ RK3 is multiplied by the

factor α(4, 1)α(4, 2)α(4, 3) to get the corresponding vertex labels for the spline pK4 ∈ RK4

, where RK4 denotes the set of all generalised splines for the edge labeled graph (K4, α).

It is easily verified that if the new vertex v4 is labeled with pv4 =α(4, 1)α(4, 2)α(4, 3),

then pK4 becomes a generalized spline for RK4 , since the edge conditions are satisfied for

the adjacent vertices in K4. So we have

pK4 =


0

α(1, 2)α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩

⟨α(4, 1)α(4, 2)α(4, 3)⟩

 =


pv1

pv2

pv3

pv4
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We can see that pv1 − pv2 ∈ A(1, 2), since α(1, 2) ∈ A(1, 2) is a factor of pv1 − pv2

Similarly we have

pv2 − pv3 ∈ A(2, 3), since α(2, 3) is a factor of pv2 − pv3

pv4 − pv1 ∈ A(4, 1), since α(4, 1) is a factor of pv4 − pv1

pv4 − pv2 ∈ A(4, 2), since α(4, 2) is a factor of pv4 − pv2

pv4 − pv3 ∈ A(4, 3), since α(4, 3) is a factor of pv4 − pv3

Here pv4 = α(4, 1)α(4, 2)α(4, 3) is non-zero because R is an integral domain. Also, since

K3 is a sub-graph of K4 and RK3 contains nontrivial generalized splines, RK4 also contains

nontrivial generalized splines.This follows from the corollary 5.4 in [55],as already discussed

in the begining of the chapter.

Using similar methods, we can identify the ring of generalized splines for the complete

graph K5.

• Complete graph (K5), n = 5[47]

Fig. 3.4: Generalized spline on K5

We can get K5 by adding the vertex v5 to K4 and the four edges joining v5 to the

four vertices v1 ,v2 , v3, v4 of K4 (Fig.3.4). Then in order to get any element of RK5

, we multiply each element of RK4 by α(5,1) α(5,2)α(5,3)α(5,4) and label the added

vertex v5 with the element α(5,1)α(5,2)α(5,3)α(5,4) ∈ R. Then any element of RK5

will be of the form pk5 as given below.
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pK5 =


0

α(1, 2)α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩⟨α(5, 1)α(5, 2)α(5, 3)α(5, 4)⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨α(4, 1) . . . α(4, 3)⟩⟨α(5, 1)α(5, 2)α(5, 3)α(5, 4)⟩

⟨α(4, 1)α(4, 2)α(4, 3)⟩⟨α(5, 1)α(5, 2)α(5, 3)α(5, 4)⟩
⟨α(5, 1)α(5, 2)α(5, 3)α(5, 4)⟩

 =


pv1

pv2

pv3

pv4

pv5


Now, we give the algorithm for writing the generalized spline for complete graph

Kn, for any n.

• Theorem[47]

We obtain the complete graph Kn by adding the nth vertex vn and the edges (vn ,

v1 ),(vn , v2 ),. . .,(vn ,vn−1 ) to the complete graph Kn−1 . Labeling the new edges

with the ideals A(n, 1), A(n, 2),. . .A(n, n − 1), we get the generalized spline ring

RKn , with the elements of the type

pKn =



0

α(1, 2)α(1, 3)⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩

⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩
⟨N5⟩⟨N6⟩ . . . ⟨Nn⟩

...

...

...

⟨Nn⟩



=



pv1

pv2

pv3

pv4

pv5
...
...
...

pvn


Here, the notations N4, N5, . . . , Nn are as follows:

N4 = α(4,1)α(4,2)α(4,3)

N5 = α(5,1)α(5,2)α(5,3)α(5,4)
...
...
...

Nn = α(n,1)α(n,2),. . . α(n, n− 1)

Proof We use mathematical induction to prove the algorithm. Let the number of

vertices in Kn be n. For n = 3, K3 is a cycle graph and it has already been proved

in [55] that a generalized spline on K3 is of the form:

pK3 =

 0

α(1, 2)α(1, 3)

(α(1, 2) + α(2, 3))α(1, 3)

 =

pv1pv2

pv3
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As discussed before, we get the generalized spline pK4 for the complete graph K4

by adding one vertex and three edges to K3 and the ring of generalized splines RK4

will have elements of the type

pK4 =


0

α(1, 2)α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨α(4, 1)α(4, 2)α(4, 3)⟩

⟨α(4, 1)α(4, 2)α(4, 3)⟩

 =


pv1

pv2

pv3

pv4


Clearly, the difference pvi − pvj of adjacent vertices vi and vj is a multiple of α(i, j)

∈ A(i, j), where A(i, j) is the edge label for the edge joining vi and vj . We conclude

that pK4 satisfies the edge condition for generalized spline over the graph K4.

Inductive step Assume that there exists a generalized spline pKn−1 for the complete

graph Kn−1 . Then we have generalized spline pKn−1 defined as

pKn−1 =



0

α(1, 2)α(1, 3)⟨N4⟩⟨N5⟩ . . . ⟨Nn−1⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨N4⟩⟨N5⟩ . . . ⟨Nn−1⟩

⟨N4⟩⟨N5⟩ . . . ⟨Nn−1⟩
⟨N5⟩⟨N6⟩ . . . ⟨Nn−1⟩

...

...

...

⟨Nn−1⟩



=



pv1

pv2

pv3

pv4

pv5
...
...
...

pvn−1


Where N4, N5,..., Nn−1 are defined as

N4 = α(4, 1)α(4, 2)α(4, 3)

N5 = α(5, 1)α(5, 2)α(5, 3)α(5, 4)
...
...
...

Nn−1 = α(n− 1, 1)α(n− 1, 2) . . . α(n− 1, n− 2)

Let the vertex ‘vn’ and the new edges joining the vertex vn to the remaining (n− 1)

vertices be added to Kn−1 to obtain the complete graph Kn. Let the edge labels

of the newly added edges be the ideals A(n, 1), A(n, 2), . . . , A(n, n− 1) of the ring

R. Taking the nth vertex label as pvn = α(n, 1)α(n, 2) . . . α(n, n− 1) = Nn, where

α(n, j) ∈ A(n, j),for j = 1, 2, . . . , n − 1 and multiplying each vertex label of the
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generalized spline for Kn−1 by Nn , we get the generalized spline pKn for Kn as:

pKn =



0

α(1, 2)α(1, 3)⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩
(α(1, 2) + α(2, 3))α(1, 3)⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩

⟨N4⟩⟨N5⟩ . . . ⟨Nn⟩
⟨N5⟩⟨N6⟩ . . . ⟨Nn⟩

...

...

...

⟨Nn⟩



=



pv1

pv2

pv3

pv4

pv5
...
...
...

pvn


Where Nn = α(n, 1)α(n, 2) . . . α(n, n − 1) is the vertex label for the new vertex

vn. Here we can see the difference between the vertex labels of the vertices vn and

any of the remaining n - 1 vertices of Kn−1 is a multiple of α(n, j) ∈ A(n, j), for

j = 1, 2, . . . , n − 1. Hence, we conclude that pKn satisfies the edge conditions for

the generalized spline for Kn. We give software code for the above algorithm using

Python. Using this we can obtain generalized spline pKn for the complete graph,

Kn , for n ≥ 3. In this code we have used A(i, j) as the notation for the ideal as

well as for the elements of the ideal.

• Python code for Kn[47]

The Python code is given as

1 import numpy as np

2 K3 = np.array([’0’,"A{1,2}*A{1,3}","(A{1 ,2}+A{2 ,3}*(A{1 ,3})"])

3 def generate Kn(n):

4 if n leq 3 :

5 return K3

6 else:

7 ans = K3

8 for i in range (4,n+1):

9 j= np.hstack ([ans ," "])

10 symbol_arr = list()

11 a = " "

12 for k in range (1,i):

13 a = a +"A{"+str(i)+","+str(k)+"}"

14 ans = [ ]

15 for x in j:

16 if x! = ’0’:

17 ans.append(x+’*’+a)

18 else:

19 ans.append(x)

20 return ans

21 generate_Kn( )

Listing 3.1: Python code for Kn
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Next we discuss the Complete Bipartite graphs.

• Complete Bipartite graphs Kn1,n2[47]

Let Kn1,n2 (V1,V2,E) be a complete bipartite graph with vertices partitioned into

two disjoint sets V1 and V2, consisting of n1 and n2 vertices respectively. Let R be

a commutative ring with unity which is an integral domain and let S denote the

set of all non-zero ideals of R. We now extend our method to develop an algorithm

for the elements of the generalized spline ring RKn1,n2
, for the complete bipartite

graph Kn1,n2 . We consider the simple cases for n1 ,n2 = 1, 2 and 3. The vertices are

ordered in the clockwise sense, starting with the first left hand side vertex in the set

V1 as the initial vertex.

It can be easily seen that p constructed in each of the following situations is a

generalized spline since the edge conditions are satisfied by the vertex labels of the

adjacent vertices.

Fig. 3.5: Generalized spline on K1,2 and K2,1[47]

pK1,2 =

 0

α(1, 2)

α(1, 3)

 =

pv1pv2

pv3



pK2,1 =

 0

α(1, 2)α(2, 3)

0

 =

pv1pv2

pv3


Here the spline pK1,2 is nontrivial since α(1,2) and α(1,3) are non-zero and also the

spline pK2,1 is nontrivial since R is an integral domain.
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Fig. 3.6: Generalized spline on K2,2[47]

Next we consider complete bipartite graph K2,2. With the clockwise ordering of

the vertices, we have the generalized spline for the complete bipartite graph K2,2 as

given below.

pK2,2 =

 0

α(1, 2)⟨α(4, 2)α(4, 3)⟩
α(1, 3)⟨α(4, 2)α(4, 3)⟩

 =


pv1

pv2

pv3

pv4


Since K1,2 or K2,1 is a sub graph of K2,2 and RK1,2 , RK2,1 contain nontrivial general-

ized splines, RK2,2 also contains nontrivial generalized splines. It can be easily seen

that the edge conditions are satisfied by the vertex labels of the adjacent vertices.

Also if we consider complete bipartite graph K3,3 as in Fig. 3.7, we have the

generalized splines as follows



Chapter 3. An Algorithm for Generating Generalized Spline Modules on Graphs such as
Complete graphs, Complete Bipartite Graphs and Hypercubes 47

Fig. 3.7: Generalized spline on K3,3[47]

pK3,3 =



0

α(1, 2)⟨N5⟩⟨N6⟩
α(1, 3⟨N5⟩⟨N6⟩
α(1, 4)⟨N5⟩⟨N6⟩

0

0


=



pv1

pv2

pv3

pv4

pv5

pv6


We define N5 and N6 as N5 = α(5, 2) α(5, 3) α(5, 4), N6 = α(6, 2) α(6, 3) α(6, 4).

Next, we consider the general case of complete bipartite graph, where the vertex sets

V1 and V2 contain n1 and n2 vertices respectively. Here we introduce the notation

Nn2+i = α(n2 + i, 2) α(n2 + i, 3) . . . α(n2 + i, n2 + 1) for i = 2, 3, . . . n1.The

following theorem gives the algorithm for writing the generalized spline ring RKn1,n2

• Theorem[47]

Let Kn1,n2 be a complete bipartite graph with vertices partitioned into two disjoint

sets V1 and V2, consisting of n1 and n2 vertices respectively(Fig.3.8). Then, ordering

the vertices in clockwise sense as before, the following pKn1,n2
gives a generalized

spline for the complete bipartite graph Kn1,n2 .
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Fig. 3.8: Generalized spline on Kn1,n2

pKn1,n2
=



0

α(1, 2)⟨Nn2+2⟩⟨Nn2+3⟩ . . . ⟨Nn2+n1⟩
α(1, 3)⟨Nn2+2⟩⟨Nn2+3⟩ . . . ⟨Nn2+n1⟩

...

...

α(1, n2 + 1)⟨Nn2+2⟩⟨Nn2+3⟩ . . . ⟨Nn2+n1⟩
0
...
...

0



=



pv1

pv2

pv3
...
...

pvn2+1

...

...

pvn2+n1


where

Nn2+i = α(n2 + i, 2)α(n2 + i, 3) . . . α(n2 + i, n2 + 1),for i = 2, 3, . . . , n1.

Proof The proof of the above theorem follows from the observation that the

difference of the vertex labels of adjacent vertices is a multiple of the elements

belonging to the corresponding edge ideals. However, we note that the algorithm

for generating a generalized spline for any complete bipartite graph holds only

for the particular ordering of the vertices in the clockwise sense. Here Nn2+i =

α(n2 + i, 2)α(n2 + i, 3) . . . α(n2 + i, n2 + 1) ,for i = 2, 3, . . . , n1 is non-zero since R is

an integral domain. Also since Kn1−1,n2−1 is sub graph of Kn1−1,n2−1 and RKn1−1,n2−1

contains non-trivial generalized splines, RKn1,n2
also contains nontrivial generalized
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splines. Here we give the software code for the above algorithm using Python. Using

this we can obtain generalized spline pKn1,n2
for Kn1,n2 , for any value of n1, n2. We

have used the notation A(i, j) for the ideal as well as for the elements of the ideal.

• Python code for Kn1,n2 [47]

1 import numpy as np

2 n1 = int(input(’Enter n1’))

3 n2 = int(input(’Enter n2’))

4 L1 = []

5 for i in range (0,n1+n2 ,1):

6 if i<n2+1:

7 if i==0:

8 L1.append(str (0))

9 L1= np.array(l1)

10 L1 = L1.reshape (-1,1)

11 Enter n1

12 Enter n2

13 RL = []

14 L = []

15 for i in range(2,n1+1):

16 for j in range (0,n2 ,1):

17 L.append("A{"+str(n2+i)+","+str(j+2)+"}")

18 RL.append(L)

19 L=[]

20 print (L1,’*’,RL)

Listing 3.2: Python code for Kn1,n2

In the upcoming subsection, we give the method of writing the generalized spline

for the n-dimensional hypercube Qn.First we discuss about the hypercube and its

general properties.

• Hypercubes[47]

Before constructing the generalized splines for the n-dimensional hypercube Qn, we

discuss about the Gray code[84] , which was given by Frank Gray in 1947 to prevent

the spurious output from electro-chemical switches. In the present time, they are

widely used for error correction in digital communications. The Gray code is an n-bit

code which is an ordering of the 2n strings of length n over 0, 1, such that every pair

of successive strings differ in exactly one position. For example a 2-bit Gray code is

00, 01, 11, 10 and a 3-bit Gray code is 000, 001, 101, 111, 011, 010,110, 100. These

Gray codes exists for all n [35]. Here we discuss about the n-dimensional hypercube

Qn, which is a regular graph with 2n vertices, where each vertex corresponds to a

binary string of length n [35]. Two vertices labeled by strings x and y are joined by

an edge if x can be obtained from y by changing a single bit. The hypercube for n

= 1,2,3 are shown in Fig.3.9.



Chapter 3. An Algorithm for Generating Generalized Spline Modules on Graphs such as
Complete graphs, Complete Bipartite Graphs and Hypercubes 50

Fig. 3.9: Hypercubes Q1, Q2 and Q3[47]

Interestingly, the existence of one dimensional Gray code is related to a basic property

of the n-dimensional hypercube Qn, which says that for every integer n ≥ 2, Qn has

a Hamiltonian cycle[49]. Here, the term Hamiltonian cycle means a cycle in a graph

G that contains all the vertices exactly once in G . The following Fig.3.10 expresses

the Hamiltonian property of Q2 and Q3.

Fig. 3.10: Hamiltonicity of Hypercubes Q2 and Q3[47]

We define an ordering of the vertices of the hypercube in the same way as they

appear in the Hamiltonian cycle. Thus, we number the vertices 1, 2, 3, . . . , 2n as

shown in Fig.3.10, with the vertices 2, 4, 8, . . . expressed as 2, 22, 23, . . . , 2n and call

this the Hamiltonian ordering[49]. This helps us in identifying pattern in which

the non-zero vertex labels appear in the generalized spline for the n-dimensional

hypercube. Also, hypercubes are regular graphs with degree of each vertex equal to n.

Another important property of hypercubes which we have used in the construction

of generalized splines is the bipartite nature of these graphs[52]. This means that

the vertex set of hypercube can be partitioned into two subsets V1 and V2 such that
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1. No vertices of either of the subsets V1 and V2 are adjacent to vertices within the

same set.

2. Every vertex in V1 is adjacent to exactly n vertices V2 and vice versa.

Fig. 3.11: Bipartite structure of Hypercubes Q2 and Q3[47]

The bipartite representation of the hypercubes for n = 2 and n = 3 are shown in

Fig.3.11.Before we give the algorithm for finding the elements of RQn for any n > 0,

we first discuss the cases for n = 2 and 3.

• Generalized spline for the hypercube Q2[47]

In this section we construct generalized spline for the graph Q2 over R which is a

commutative ring with identity and also an integral domain. The edges of Q2 are

labeled with non-zero ideals of R. The vertices are ordered in the way they appear

in Hamiltonian cycle(Fig.3.10).

Then it can be easily verified that a generalized spline for Q2 is given by
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pQ2 =


0

α01,00α01,11

α10,00α10,11

0

 =


pv00

pv01

pv11

pv10

 =


pv1

pv2

pv3

pv22


Here we have used similar notations in previous sections, i.e.,αij,rs, (for i, j, r, s =

0 or 1) denote an element of the edge ideal associated with the edge joining the

vertices vij and vrs. Interestingly, we note that the non-zero vertex labels in pQ2

appear for the vertices 2 and 22.

In order to construct the generalized splines for the hypercube Q3,we refer to the

bipartite structure[35] and Hamiltonian ordering[49] of Q3(Fig.3.10 and Fig.3.11).

Then it can be easily verified that a generalized spline for Q3 is given by

pQ3 =



0

α001,000α001,011α001,101

0

α010,000α010,011α010,110

0

0

0

α100,000α100,011α100,110


=



pv000

pv001

pv011

pv010

pv111

pv110

pv101

pv100


=



pv1

pv2

pv3

pv22

pv5

pv6

pv7

pv23


The vertices of Q3 are vi1i2i3 where (i1,i2,i3) is a binary string of length 3 and two

vertices are adjacent if their respective strings differ only at one position. Also,

we see that the Hamiltonian cycle in Q3 is one in which the vertices follow a 3-bit

gray code 000,001, 011, 010, 110, 111, 101, 100. We again give the Hamiltonian

ordering[49] to the vertices in Q3 by numbering the vertices 000,. . .,100 as 1,2,. . .,8.

Constructing the generalized spline for Q3 starts with labeling the vertex v000 as

0. Now, the vertices adjacent to v000 are v100, v010 and v001 ,which are numbered as

2,22,23 according to Hamiltonian ordering of the vertices. We see that these are the

only vertices which are labeled with non-zero elements in pQ3 . Also, the vertex labels

of these vertices are obtained by taking the product of the elements belonging to the

edge ideals corresponding to the three edges which are adjacent to these vertices. It

can be verified that with these vertex labelings, pQ3 becomes a generalized spline

for the hypercube Q3, because the edge conditions are satisfied by the vertex labels

of adjacent vertices. We can extend the above method of writing the generalized

spline to higher dimensional hypercubes.

• Generalized spline for the hypercube Q4[47]

The graph of 4-dimensional hypercube Q4 is in the following figure, Fig.3.12.
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Fig. 3.12: Graph of Hypercube Q4[47]

The bipartite structure and Hamiltonian path of the hypercube Q4 are as follows

Fig. 3.13: Bipartite structure and Hamiltonicity of Hypercube Q4[47]
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For Q4 we have the first vertex as v0000 which is adjacent to the vertices v0001,v0010,

v0100 and v1000. Using the bipartite structure of Q4 and Hamiltonian ordering, we

get the generalized spline for Q4 as follows

pQ4 =



0

α0001,0000α0001,1001α0001,1010α0100,1100

0

α0010,0000α0010,1001α0010,1010α0100,1100

0

0

0

α0100,0000α0100,0011α0100,1010α0100,1100

0

0

0

0

0

0

0

α1000,0000α1000,1001α1000,1010α1000,1100



=



pv0000

pv0001

pv0011

pv0010

pv0111

pv0110

pv0101

pv0100

pv1100

pv1101

pv1111

pv1110

pv1010

pv1011

pv1001

pv1000



=



pv1

pv2

pv3

pv22

pv5

pv6

pv7

pv23

pv9

pv10

pv11

pv12

pv13

pv14

pv15

pv24


Once again, we see that the non-zero vertex labels appear only for the vertices

numbered as 2, 22, 23 and 24. These are the vertices adjacent to the vertex 1 in

the Hamiltonian ordering of the vertex v0000 in the bipartite structure. Also, the

non-zero vertex labels are obtained by taking the product of the four elements of

the edge ideals corresponding to the four edges which are incident to the respective

vertices. Thus, the vertex v0001 is labeled with the product of the four elements

α0001,0000 α0001,0011 α0001,0101 α0001,1001, because it is adjacent to the vertices v0000,

v0011, v0101 and v1001. This gives us an algorithm for writing the generalized spline

for the edge labeled n-dimensional hypercube Qn, for any n.

• Theorem[47]

Let Qn be an n-regular hypercube with the vertices partitioned into two disjoint

subsets V1 and V2, containing 2n−1 vertices each. We introduce the Hamiltonian

ordering[49] for the vertices of Qn so that the vertices are numbered as 1, 2, 3,

22, . . . , 2n. Let the first vertex be v00...0 in V1 and adjacent vertices v0...01, v0...010,

v0...100,. . ., v10...0 in V2 which are numbered as 2, 22, 23, . . . , 2n. The vertex labels

corresponding to the generalized spline pQn defined for Qn are as follows:

1. The vertex v00...0 is labeled with the element 0 ∈ R, i.e, pv0...0 = 0.
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2. The vertex v0...1 which is adjacent to v0...0 is labeled as pv0...1 and is equal to the

product of the n elements belonging to the edge ideals associated with the n edges

adjacent to v00...0. Then,

pv00...01 = α0...01,0...00α00...01,0...011α00...01,0...0101 . . . α00...01,10...01

Similarly the vertex v00...10 is labeled as pv0...10 associated with the n edges adjacent

to the vertex v00...010. Then,

pv00...010 = α0...10,0...00α00...10,0...011α00...10,0...0110...α00...10,10...010 and so on.

These are the only vertices with non-zero vertex labels where each vertex label is

a product of n elements belonging to n edge ideals and the remaining vertices are

labeled as zero. It can be easily verified that pQn is a generalized spline on the

hypercube Qn as the edge conditions are satisfied for the adjacent vertices and also,

pQn is nontrivial since R is an integral domain.

3.4 Conclusions

Conclusions[47]

We conclude our work by developing an algorithm to construct the generalized spline

rings for the special graphs such as the complete graphs, complete bipartite graphs and

hypercubes. These graphs find important applications in network and approximation

theory and the present work adds to the existing knowledge and understanding in these

and related areas. Also, it opens a vast field for research as we can think of studying the

generalized splines over these and other graphs by changing the base rings to other rings

such as the polynomial rings and ring of Laurent polynomials. As these rings are PIDs,

we can also try to find suitable bases for the generalized splines for these graphs.


