
Chapter 4

Module Basis for Generalized Spline

Modules

4.1 Introduction

As discussed in chapter 2, the generalized splines were defined by Gilbert,Shira Pol-

star,Juliana Tymoczko in [55], over an edge labeled graph (G,α), with the base ring R

and the edge labeling function α. They have shown that the set of generalized splines

has a ring structure and an R-module structure with respect to pointwise operations of

addition, multiplication and multiplication by elements in R respectively (section 2.4).

The problem that has been addressed in the study of generalized spline modules is to

determine whether these modules are free, and characterization of the bases elements in

case they are free. It has been shown in [55] that for R to be a PID, the generalized spline

module R(G,α) is free over any arbitrary graph G. In fact, if G is a tree graph, R(G,α) is free

irrespective of the choice of the base ring. Flow- up classes were introduced by Handcshy,

Melnick,in [63],for the cycle graphs and it was shown that the leading non zero entries

of the flow-up classes were crucial in determining whether these classes formed a basis.

Selma Altinok, Samet Sarioglan [7],[8] have used combinatorial techniques to determine

the leading entries of the flow-up classes, using the zero trail methods which helps in

calculating a crucial element QG in R for some graphsG such as the cycle graph,tree

graph etc. Basis criteria for a set of splines to become a basis for R(G,α) is given, using

the element QG. In this chapter, we have given the basis criteria for a set of splines to

become a basis for the family of graphs such as the Dutch Windmill graph and the special

cases such as the butterfly graph and friendship graph over a GCD domain R. The Dutch

windmill graph consists of m copies of cycle graphs Cn, connected at a common cut vertex.
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We have also extended the results to the complete graph K4 and the wheel graph W4,

which are isomorphic and have concluded that they have the same basis criteria over a

GCD domain.

4.2 Preliminaries

In this section, we give the preliminary results that are being used in our study. Throughout

this study, R stands for a commutative ring and I is the set of all ideals of R.We give the

definitions and results from [8],[7] and [55], which we have used for proving results in our

study.By a graph G = (V,E), we mean a finite undirected graph with neither loops nor

multiple edges. The order |V | and the size |E| of G are denoted by n and m respectively.

We have already discussed the definition of generalized splines and flow-up basis in

chapter 2. However, we again give the definitions and examples for the convenience of

understanding our work.

• Generalized Spline[7]

A generalized spline on an edge labeled graph (G,α) is a vertex labeling F ∈ R|V |

such that for each edge vivj ∈ E, we have fi − fj ∈ α(vivj), where fi denotes the

label on vertex vi. The collection of all generalized splines on a base ring R over the

edge labeled graph (G,α) is denoted by R(G,α).

As an example discussed in [8], we have

• Example[8]

Let (G,α) be as the Fig.4.1 below.

Fig. 4.1: Example of spline

A spline over (G,α) can be given by F = (2, 12, 14, 26).

The flow-up classes are a special type of splines which play a very important role in

determining the R-module basis for R(G,α). They are defined as
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• Flow-up class[7]

Let (G,α) be an edge labeled graph with n vertices. Fix i with 1 ≤ i ≤ n. A flow-up

class F (i) is a spline in R(G,α) with first i− 1 leading zeros, that is, the components

F
(i)
i = 0 and F

(i)
j = 0 for all j < i. The set of all i-th flow-up classes is denoted by

Fi.

As an example of flow-up basis, we have

• Example[8]

Consider the edge labeled graph (G,α) in Fig.4.1 again. Flow-up classes on (G,α)

can be given by F (1) = (1, 1, 1, 1), F (2) = (0, 10, 0, 0), F (3)(3) = (0, 0, 2, 0) and

F (4) = (0, 0, 0, 12).

The following definition of n×k matrix shows the matrix representation of a flow-up

basis.

• Definition [8]

Let (G, α) be an edge labeled graph with

V(G) ={v1, v2, . . ., vn }. Let A = {F1, F2, . . .,Fk} ⊂ R(G,α).

Let F i( vj) = fij . Then the n× k matrix
f1n f2n . . . fkn
...

... . . .
...

f11 f21 . . . fk1


is the matrix representation of A.

Bowden and others [63],[21],[20] proved that flow-up classes with smallest leading

entries form a module basis for R(G,α) where R is an integral domain.

Selma Altinok and Samet Sarioglan introduced special trails and zero trails to

determine the smallest leading entries of flow-up classes over an integral domain

R.They have proved the following proposition 3.3 about zero trails in [7].

• Proposition[7]

Let (G,α) be an edge labeled graph with n vertices and let F (i) = (0, . . . , 0, fi, . . . , fn)

∈ Fi with i > 1. Let vj be a vertex with j ≥ i and let p(j,0) be an arbitrary zero

trail of vj . Then p(j,0) divides fj .

Also they have shown the existence of flow-up bases on any graph over principal

ideal domains [7]. If R is not a domain, then R(G,α) may not have a flow-up basis

even it is free.The following theorem proves the existence of flow-up bases for R(G,α)

when the base ring R is a PID.
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• Theorem[7]

Let (G,α) has n vertices and R be a PID. Fix vi with i > 1 and assume that all

vertices vj with j < i are labeled by zero. Then a flow-up class F (i) exists with the

first nonzero entry fi = [p(i,0)]

In Lemma 2.3 [7], it was shown that R(G,α)
∼= R(G′ ,α) if G

′
is obtained by reordering

the vertices of G.The following lemma shows the relation between the determinant

of a basis of R(G,α) and R(G′ ,α) where G
′
is obtained by reordering the vertices of G.

• Lemma[8]

Let (G,α) be an edge labeled graph with n-vertices and let {F1, . . . , Fn} forms a

basis for R(G,α). Let σ ∈ Sn be a permutation and let σ(G,α) = (G
′
, α) be a vertex

reordering of (G,α) as defined in Lemma 2.3[8]. If {G1, . . . , Gn} is a basis for R(G′ ,α)

, then | F1F2 . . . Fn | = r | G1G2 . . . Gn | where r ∈ R is a unit.

The set R(G,α) of generalized splines is a ring and an R-module [55]. The module of

generalized splines R(G,α) contains a free sub module of rank at least the number

of vertices [55], and over a PID it is always free with rank equal to the number of

vertices [63]. But the module of generalized splines can have essentially any rank

over a ring with zero divisors [21].

The following example shows that with two different edge labelings of cycle graph

C3, dim(R(C3,α1)) ̸= dim(R(C3,α2)),where α1,α2 are the edge labeling functions with

the base ring Z and the quotient ring Z/mZ respectively.We know that Z is an

integral domain where as Z/mZ is not an integral domain.

• Example[48]

Let E = (2,5,3) be the set of edge labels on cycle graph C3 (Fig.4.2), α1 :E−→ I1

where I1 denote the set of ideals of the ring of integers Z and α2: E −→ I2 where I2

denote the set of ideals of quotient ring Z/15Z, the ring with zero divisors.It can be

seen that the set R(C3,α1) of generalized splines over Z is generated by {(1,1,1),(0,2,12)
(0,0,15)} and so the dim(R(C3,α1)) = 3. The set of generalized splines over Z/15Z is

generated by {(1,1,1),(0,2,12)} and so the dim(R(C3,α2)) = 2.
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Fig. 4.2: Cycle graph C3[48]
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Selma Altinok and Samet Sarioglan[8] have defined the element QG ∈ R using the

method of zero trails, about which we have discussed in Chapter 2. By the notations

in [8],

QG =
∏k

i=2 [ {( p(i,0)t ) } | t = 1,...,mi] ,where p
(i,0)
t are zero trails of vi and mi is the

number of the zero trails of vi.

The element QG could be obtained in terms of edge labels on cycles, diamond graphs

and trees but not for bigger graphs in general. Gjoni[50] and Mahdavi [74] studied

integer splines on cycles and diamond graphs respectively and they stated that a

given set of splines forms a basis for Z(G,α) if and only if the determinant of the matrix

whose columns are the elements of the given set is equal to a formula Q given by

edge labels. Altinok and Sarioglan have shown in [8] that the formula Q corresponds

to QG and generalize their statement to other families of graphs.Gjoni[50] gave basis

criteria for integer splines on cycles by using determinantal techniques. The result

given by Gjoni is

• Theorem[50]

Fix the edge labels on (Cn, α).Let Q =
l1l2 . . . ln

(l1, l2, . . . , ln)
and let F1, . . . , Fn ∈ ZCn,α.Then

{F1, . . . , Fn} forms a module basis for ZCn,α if and only if | F1F2 . . . Fn | = ±Q.

In fact, Gjoni has used the concept of flow-up basis for proving the above theorem.

However, as discussed earlier, flow-up basis may not exist when R is not a PID.

Altinok and Sarioglan has obtained a generalized version of Gjoni’s result[50] over a

GCD domain. They have shown that for a cycle graph Cn, Q defined by Gjoni is

same as QG [8]defined by them.

Mahdavi[74] and Rose tried to give a basis criteria and obtained a similar result for

the Z(D3,3,α) for the diamond graph D3,3. They have given the result

• Lemma[74] Fix the edges on (D3,3, α). Let (l2, l3, l4, l5) = (l1, l2) = (l1, l3) =

(l1, l4) = (l1, l5) = 1, and Q =
l1l2l3l4l5

(l2, l3)(l4, l5), l1(l2, l3, l4, l5)
.If W,X, Y, Z ∈ Z(D3,3,α) ,

then Q divides | W,X, Y, Z |.

And they have conjectured the following result

• Conjecture[74]

Fix the edges on (D3,3, α).Let Q =
l1l2l3l4l5

(l2, l3)(l4, l5), l1(l2, l3, l4, l5)
and let W,X, Y, Z ∈

Z(D3,3,α).If | W,X, Y, Z | = ±Q,then {W,X, Y, Z} forms a basis for Z(D3,3,α).

Again, Altinok and Sarioglan [8] have proved that that Q defined above is same

as Q(D3,3) for the diamond graph and proved the conjecture made by Mahdavi and
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Rose[74] for a GCD domain R, further generalizing it to the diamond graphs D(m,n)

for any m and n. In fact, as flow-up basis is not guaranteed over a GCD domain,

they have used different approach and obtained the result

• Theorem[8]

Let (D3,3, α) be an edge labeled diamond graph. Then {F1, F2, F3, F4} ⊂ R(D3,3,α) is

a basis for R(D3,3,α) if and only if | F1F2F3F4 | = r ·QD3,3 where r ∈ R is a unit.

Further they have generalized the result for D(m,n) for any m,n. Also, it is known

that spline modules over tree graphs are free and possess flow-up basis irrespective

of the base ring R. they have formularized QG for the tree graphs, and gave the

basis criteria for the tree graphs using the flow-up basis. The result proved by them

is

• Theorem [8]

Let G be a tree with n vertices and k edges. Then {F1, . . . , Fn} ⊂ R(G,α) forms a

basis for R(G,α) if and only if | F1F2 . . . Fn | = r ·QG where r ∈ R is a unit and R is

a GCD domain.

The result which is very important to our work in this chapter is the one in which

they have given the basis criteria over graphs which are joins of cycle, diamond and

tree graphs. The result follows as

• Corollary [8]

Let {G1, . . . , Gk} be a collection of cycles, diamond graphs and trees and let G be a

graph obtained by joining G1, . . . , Gk together along common vertices which are cut

vertices in G. Then {F1,...,Fn} ⊂ R(G,α) forms a basis for R(G,α) if and only if

| F1F2 . . . Fn | = r· QG1 . . . QGk
, where r ∈ R is a unit.

Over a PID R, basis criteria can be obtained for an arbitrary graph G, in terms of

the element QG. As it is difficult to calculate QG for complicated graphs, they have

conjectured that the above results can be generalized for arbitrary graphs over GCD

domains.

In this chapter we have extended their results to Dutch Windmill graphs and their

special cases such as friendship graph and butterfly graphs over GCD domains by

calculating Q
(D

(m)
3 )

and giving basis criteria for a set of splines in R
(D

(m)
3 ,α)

. Although,

we could not generalize the results to arbitrary graphs, but our extension covers an

important graph family and opens the possibilities of further extensions to other

graphs which are widely used in networks and build upon the existing knowledge.
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4.3 Results & Discussions

Results & Discussions[48] Let (D
(2)
3 , α) be an edge labeled Butterfly graph (Fig. 4.3(a))

and (D
(m)
3 , α) be an edge labeled Friendship Graph (Fig.4.3(b)) which are special cases

of Dutch windmill graph (Fig. 4.4). An edge labeled Butterfly graph has 5 vertices v1,

v2, v3, v4, v5 and 6 edges l1, l2, l3, l4, l5, l6. Let v1 be common cut vertex between two

triangles T1 and T2.

By Corollary 3.27[8], flow-up basis for Butterfly graph over any GCD domain exists, as it

has common cut vertex between two triangles (cycle graphs with 3 vertices). Thus, for

any {F1, F2, F3, F4, F5} ⊂ R
(D

(2)
3 ,α)

where F1 = (1, 1, 1, 1, 1), F2 = (0, g2, g3, g4, g5), F3 =

(0, 0, g3, g4, g5), F4 = (0, 0, 0, g4, g5) and F5 = (0, 0, 0, 0, g5), we can construct the smallest

leading entries of these classes using the zero trail method which is as follows
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Fig. 4.3: (a) Butterfly Graph D
(2)
3 (b) Friendship Graph D

(m)
3 [48]

Since zero trails of v2 in D
(2)
3 are p(2,0) = l1 and p(2,0)=l2 l3, the smallest value for leading

entry g2 of F2 is [l1, (l2, l3)] by Proposition 3.3 [7], where (l2, l3) denotes the greatest

common divisor of edge labels l2,l3 and [l1, (l2, l3)] denotes the least common multiple of

l1 and (l2, l3).

Similarly, the smallest value for leading entry g3 in F3 is [l2, l3], g4 of F4 is [ l4, (l5, l6) ]

and g5 of F5 is [ l5, l6 ]
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From the definition of QG[8], for any graph G, we have Q
D

(2)
3

defined as

Q
D

(2)
3

= [l1, (l2, l3)].[l2, l3].[l4, (l5, l6)].[l5, l6]

=
l1(l2, l3)

(l1, (l2, l3))
.
l2l3

(l2, l3)
.
l4(l5, l6)

(l4, (l5, l6))
.
l5l6

(l5, l6)

=
l1l2l3

(l1, l2, l3)
.

l4l5l6

(l4, l5, l6)
= QT1 .QT2

Here T1 and T2 are the two triangles with common cut vertex. Next we give condition for

basis criterion for D
(2)
3 .

• Theorem[48]

Let (D
(2)
3 ,α) be an edge labeled Butterfly graph over any GCD domain R. Then,

(i) Dimension of (D
(2)
3 ,α) = 5.

(ii) If F = {F1, F2, F3, F4, F5} ⊂ R
(D

(2)
3 ,α)

and | F |=| F1F2F3F4F5 |, then F is a basis

for R
(D

(2)
3 ,α)

if and only if

| F |= r.QT1QT2 where r ∈ R is a unit where T1 and T2 are the two triangles with

common cut vertex.

Proof Taking into consideration the leading entries of F1,F2, F3, F4, F5, as calculated

earlier we have,

| F1F2F3F4F5 | =

∣∣∣∣∣∣∣∣∣∣∣∣

1 g5 g5 g5 g5

1 g4 g4 g4 0

1 g3 g3 0 0

1 g2 0 0 0

1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 1.g2.g3.g4.g5

= 1.[l1, (l2, l3)].[l2, l3].[l4, (l5, l6)].[l5, l6]

Here we observe that | F | is equal to Q
D

(2)
3

and is equal to QT1 .QT2 .

In the next lemma, we apply the above result for Friendship graph D
(m)
3 (Fig.4.3(b)).

• Lemma

Let (D
(m)
3 , α) be an edge labeled Friendship graph with

2m + 1 vertices v1, v2, . . . , v2m+1 and 3m edge labels l1, . . . , l3m

(Fig.4.3(b)). It is obtained by joining m copies of triangles, T1, T2, . . . , Tm together

along the common vertex v1, which is cut vertex in D
(m)
3 .

Then,
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Q
D

(m)
3

=
l1l2l3

(l1, l2, l3)
.

l4l5l6

(l4, l5, l6)
. . .

l3m−2l3m−1l3m

(l3m−2, l3m−1, l3m)

Proof The above equality can easily be shown as in [8], by rewriting the least

common multiples and greatest common divisors explicitly.

Next we apply this result to Dutch windmill graph D
(m)
n , for any n and m (Fig.4.4).

In order to prove the basis criterion, first we give the formula for Q
D

(m)
n

.

• Lemma[48]

Let (D
(m)
n , α) be an edge labeled Dutch windmill graph with m(n− 1) + 1

vertices v1, v2, . . . , vm(n−1)+1 and mn edge labels l1,. . .,lmn (Fig.4.4).

It is obtained by joining m copies of n-cycles Cn1 ,Cn2 ,. . ., Cnm

together along the common vertex v1,

which is cut vertex in D
(m)
n .

Then Q
D

(m)
n

is obtained as

Q
D

(m)
n

=
l1l2 . . . ln

(l1, l2, . . . , ln)
.

ln+1 . . . l2n

(ln+1, . . . , l2n)
. . .

lmn−(n−1) . . . lmn

(lmn−(n−1), . . . , lmn)

1
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Fig. 4.4: Dutch windmill graph,D
(m)
n

Proof Again, the above equality can easily be shown as in [8], by rewriting the least

common multiples and greatest common divisors explicitly.

As a special case, we can obtain the basis criteria for generalized spline modules on

Friendship graph D
(m)
3 over any GCD domain as follows:

• Theorem

Let (D
(m)
3 ,α) be an edge labeled Friendship graph over any GCD domain R.Then

(i) Dimension of (D
(m)
3 ,α) = 2m+1.
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(ii) If F = {F1, . . . , F2m+1 } ⊂ R
(D

(m)
3 ,α)

and | F | = | F1 F2 . . . F2m+1 |, then F is a

basis for R
(D

(m)
3 ,α)

if and only if | F |= r.QT1QT2 . . . QTm where r ∈ R is a unit where

T1, T2, . . . , Tm are triangles with common cut vertex.

Proof First we reorder the vertices of graph D
(m)
3 such as the vertices on each triangle

are consecutively ordered, except the least indiced vertex v1. Construct the matrix

[F1 F2.......F2m+1] whose columns are elements of the obtained basis {F1, . . . , F2m+1

} for R
(D

(m)
3 ,α)

. Then the determinant of this matrix, | F1 F2 . . . F2m+1 | is equal to
the product r. QT1 QT2 . . . QTm , where r ∈ R is a unit (By methods used in Theorem

3.8 [8] and Corollary 3.28[8]).

We can generalize the above theorem to obtain the basis criteria for generalized

spline modules on Dutch windmill graph D
(m)
n over any GCD domain as follows:

• Theorem[48]

Let (D
(m)
n ,α) be an edge labeled Dutch windmill graph over any GCD domain

R.Then

(i) Dimension of (D
(m)
n ,α) = m(n− 1) + 1

(ii) If F = {F1, . . . , Fm(n−1)+1 } ⊂ R
(D

(m)
n ,α)

and | F |=| F1 F2 . . . Fm(n−1)+1 |, then F

is a basis for R
(D

(m)
n ,α)

if and only if | F |= r.QCn1
QCn2

. . . QCnm
where r ∈ R is a

unit and Cn1 , Cn2 , . . . , Cnm are cycle graphs with n vertices which have common cut

vertex.

Proof It follows directly from the above Lemma and Theorem for friendship graph.

Next, we consider Complete graph K4 (Fig.4.5(a)) and Wheel graph W4 (Fig.4.5(b))

which are isomorphic to each other. We find basis criteria for generalized spline

modules on these two isomorphic graphs separately over GCD domain. First we

consider basis criterion for complete graph.
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Fig. 4.5: (a) Complete Graph (b) Wheel graph W4
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• Complete Graph K4[48]

Take Diamond graph D3,3 with the common edge l1 and the remaining edges as l2,

l3, l4, l5 and four vertices v1, v2, v3, v4. Adding one edge l6 between the vertices v3

and v4, we get complete graph K4 as above (Fig.4.5(a)). There is no common cut

vertex between the Diamond graph and the edge l6. Now, l1, l2, l3, l4, l5 is Diamond

graph with centre edge l1 and also l6, l5, l2, l3, l4 is a Diamond graph with centre

edge l6.

Then the smallest leading entries of splines F2, F3, F4 which are calculated by using

the zero trails of vertices v2, v3, v4 of Complete graph K4 are

[l1, (l2, l3), (l4, l5), (l2, l6, l4), (l5, l6, l3)]; [l2, l3, (l6, l4), (l6, l5)]; [l4, l6, l5] respectively.

From the definition of QG [8], for any graph G, we give QK4 as

QK4 = [l1, (l2, l3), (l4, l5), (l2, l6, l4), (l5, l6, l3)] · [l2, l3, (l6, l4), (l6, l5)] · [l4, l6, l5]

=
l1(l2, l3)(l4, l5)(l2, l4, l6)(l3, l5, l6)

(l1, (l2, l3), (l4, l5), (l2, l4, l6), (l3, l5, l6))
· l2l3(l6, l4)(l5, l6)

(l2, l3(l6, l4), (l6, l5))
· [l4, l5, l6]

=
(l4, l5)(l5, l6)(l6, l4)[l4, l5, l6]l1l2l3(l2, l3)(l2, l4, l6)(l3, l5, l6)

((l1, l2, l3, (l4, l5)), (l2, l4, l6, (l3, l5, l6)))(l2, l3, l6, l4, (l6, l5))

=
l4l5l6(l4, l5, l6)l1l2l3(l2, l3)(l2, l6, l4)(l5, l6, l3)

((l1, l2, l3, l4, l5), (l2, l4, l6, l3, l5))(l2, l3, l6, l4, l6, l5)

[ (l4l5)(l5, l6)(l6, l4)[l4, l6, l5] = l4l5l6(l4, l5, l6)]

=
l1l2l3l4l5l6(l2, l3)(l2, l4, l6)(l3, l5, l6)(l4, l5, l6)

((l1, l2, l3, l4, l5), (l2, l3, l4, l5, l6))(l2, l3, l4, l5, l6)

In the above simplification of formula for QK4 , we have used the properties of gcd

and lcm for any GCD domain. We prove following lemma to show that QK4 divides

| F1 F2 F3 F4 |
.

• Lemma[48]

Let K4 be as in Fig.4.5(a) and let{F1,F2,F3,F4}⊂ R(K4,α). Then QK4 divides | F1

F2 F3 F4 |.

Proof Since edge labels l1, l2, l3, l4 and l5 form a Diamond graph, we con-

clude that l1l2l4, l1l2l5, l1l3l4, l1l3l5, l2l3l4, l2l3l5, l2l4l5 and l3l4l5 divide | F1F2F3F4 | by
lemma3.13[8].

Similarly, since l6, l5, l2, l3, l4 form a Diamond graph respectively, we conclude that

the products l6l5l3,l6l5l4, l6l2l3, l6l2l4, l5l2l3, l5l2l4, l5l3l4 and l2l3l4 divide | F1F2F3F4 |,
by lemma3.13 [8].
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Since the products l6l2l4, l6l5l3 and l4l5l6

divide | F1F2F3F4 |, gcd of the edge labels (l2,l4,l6),(l5,l6,l3) and (l4,l5,l6) divide

| F1F2F3F4 |.

In order to see that the product l2l3 divides | F1F2F3F4 |, where
Fi = (fi1, fi2, fi3, fi4) ∈ R(K4,α) for i = 1,2,3,4, we consider the determinant

| F1F2F3F4 |=

∣∣∣∣∣∣∣∣∣∣
f14 f24 f34 f44

f13 f23 f33 f43

f12 f22 f32 f42

f11 f21 f31 f41

∣∣∣∣∣∣∣∣∣∣
By some suitable row operations on the determinant and by edge conditions, we

obtain

| F1F2F3F4 | =

∣∣∣∣∣∣∣∣∣∣
f14 f24 f34 f44

f13 − f11 f23 − f21 f33 − f31 f43 − f41

f12 − f13 f22 − f23 f32 − f33 f42 − f43

f11 f21 f31 f41

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
f14 f24 f34 f44

x13l3 x23l3 x33l3 x43l3

x12l2 x22l2 x32l2 x42l2

f11 f21 f31 f41

∣∣∣∣∣∣∣∣∣∣
= l2l3

∣∣∣∣∣∣∣∣∣∣
f14 f24 f34 f44

x13 x23 x33 x43

x12 x22 x32 x42

f11 f21 f31 f41

∣∣∣∣∣∣∣∣∣∣
∈ R

for some xij belonging to R.

Hence we see that l2l3 divides | F1 F2 F3 F4 | and so (l2,l3) divides

| F1F2F3F4 | i.e.,

QK4 =
l1l2l3l4l5l6(l2, l3)(l2, l4, l6)(l3, l5, l6)(l4, l5, l6)

((l1, l2, l3, l4, l5), (l2, l3, l4, l5, l6))(l2, l3, l4, l5, l6)

divides | F1 F2 F3 F4 |.

Next we give following lemma for any GCD domain.

• Lemma[48]

Let (K4,α) be an edge labeled Complete graph. Let

{ F1, F2, F3, F4 } ⊂ R(K4,α). If | F1 F2 F3 F4 | = r QK4 , where r ∈ R is a unit, then

{ F1, F2, F3, F4 } forms a basis for R(K4,α).

Proof Proof can be shown by using similar techniques as in the proof of lemma

3.17 [8].
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Next, we prove following theorem to show that flow-up basis exists for generalized

spline modules on Complete graph K4 over GCD domain.

• Theorem

Let (K4, α) be an edge labeled Complete graph over any GCD domain. Let { F1,

F2, F3, F4 } ⊂ R(K4,α). If { F1, F2, F3, F4 } is a basis for R(K4,α), then | F1 F2 F3

F4 | = r QK4 , where r ∈ R is a unit.

Proof Since {F1, F2, F3, F4} ⊂ R(K4,α), the determinant

| F1 F2 F3 F4 | = r QK4 for some r ∈ R .We will show that r is a unit.

Let d1 = (l2,l3) and d2 = (l4,l5). Then we have l2 = d1l
′
2, l3 = d1l

′
3 with (l′2,l

′
3 ) = 1

and similarly l4 = d2l
′
4, l5 = d2l

′
5 with (l′4,l

′
5) = 1. Consider the following matrices

A1 =


1 0 0 [l4, l5]

1 0 [l2, l3] 0

1 0 0 0

1 [l1, (l2, l3), (l4, l5)]l
′
3l

′
5 0 0



A2 =


1 [l1, (l2, l3), (l4, l5)]l

′
4l

′
2 0 [l4, l5]

1 [l1, (l2, l3), (l4, l5)]l
′
4l

′
2 [l2, l3] 0

1 0 0 0

1 [l1, (l2, l3), (l4, l5)]l
′
4l

′
2 0 0



A3 =


1 [l1, (l2, l3), (l4, l5)]l

′
3l

′
4 0 [l4, l5]

1 0 [l2, l3] 0

1 0 0 0

1 [l1, (l2, l3), (l4, l5)]l
′
3l

′
4 0 0



A4 =


1 0 0 [l4, l5]

1 [l1, (l2, l3), (l4, l5)]l
′
2l

′
5 [l2, l3] 0

1 0 0 0

1 [l1, (l2, l3), (l4, l5)]l
′
2l

′
5 0 0


It can be easily seen that each column of A1, A2, A3 and A4 is an element of R(K4,α).

By proposition 3.1 [8], | F1 F2 F3 F4 | = r QK4 divides l′3l
′
5. One can conclude that

r divides l′2l
′
4, l

′
3l

′
4 and l′2l

′
5 by the same observation. Thus we have,

r | (l′3l′5l′2l′4l′3l′4l′2l′5) = ((l′2l
′
4, l

′
2l

′
5), (l

′
3l

′
4, l

′
3l

′
5))

= (l′2(l
′
4, l

′
5), l

′
3(l

′
4.l

′
5))

= (l′2, l
′
3) = 1

and so r is a unit.

Combining above lemma and theorem for (K4, α), we have the following result for

complete graph K4, over any GCD domain.
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• Theorem[48]

Let (K4,α) be an edge labeled Complete graph over any GCD domain. Then

(i) Dimension of R(K4,α) = 4.

(ii) If F={F1,F2,F3,F4} ⊂ R(K4,α) and | F | = | F1F2 F3F4 |,then F is a basis for

R(K4,α) if and only if | F | = rQK4 , where r ∈ R is a unit.

Now we find basis criterion for generalized spline modules on Wheel graph W4 with

4 vertices, which is isomorphic to Complete graph K4 using the above method.

• Wheel Graph W4[48]

Let W4 be an edge labeled Wheel graph (Fig.4.5(b)). It has four vertices v1,v2,v3,v4

and 6 edges, l1,l2,l3,l4,l5 and l6 and is isomorphic to Complete graphK4. The smallest

leading entries of of splines F2, F3, F4 which are calculated by using the zero trails

of vertices v2,v3 and v4 of Wheel graph W4 are [l1,(l2,l3),(l4,l5),(l2,l6,l4),(l5,l6,l3)]; [l2,

l3, (l6,l4),(l6,l5)] and [l4,l6,l5]

We observe that these leading entries are same as the smallest leading entries of

splines of Complete graph K4. From the definition of QG[8], for any graph G, we

have

QW4 = [l1, (l2, l3), (l4, l5), (l2, l6, l4), (l5, l6, l3)].[l2, l3, (l6, l4), (l6, l5)].[l4, l6, l5]

=
l1l2l3l4l5l6(l4, l5, l6)(l2, l3)(l2, l6, l4)(l5, l6, l3)

((l1, l2, l3, l4, l5), (l2, l3, l4, l5, l6))(l2, l3, l4, l5, l6)

which is

equal to QK4

Now, we can have following theorem for basis criterion for generalized spline modules

on Wheel graph W4 which can easily be proved with similar methods used as in case

of Complete graph K4 over any GCD domain.

• Theorem[48]

Let (W4,α) be an edge labeled Wheel graph over any GCD domain, R. Then,

(i) Dimension of R(W4,α) = 4.

(ii) If F = {F1, F2, F3, F4} ⊂ R(W4,α) and | F | = | F1 F2 F3 F4 | , then F is a basis

for R(W4,α) if and only if | F | = r QW4 , where r ∈ R is a unit.

Here we observe that Complete graph K4 and Wheel graph W4 which are isomorphic

to each other have same set of smallest leading entries for their flow-up splines. Also,

the formula for QG is equal for these graphs and basis criterion for generalized spline

modules on these graphs is same over any GCD domain.
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4.4 Conclusions

Conclusions[48]

We have given basis criteria for R(G,α) on edge labeled Dutch windmill graph and special

cases of Dutch windmill graph such as Friendship graph and Butterfly graph which have

common cut vertices with Cycle graph Cn and triangles respectively, over any GCD domain

by using determinantal techniques[8] and flow-up bases. Dutch windmill graph has a lot of

applications in dynamical processes like epidemic dynamics and network synchronization

which are studied on graphs [51]. Our study may help in deeper understanding of structures

of the graphical representation of the spread of infectious diseases which has become an

active area of research in the present times.

By giving basis criteria for two graphs K4 and W4 over any GCD domain, we show an

example for the conjecture 3.29 [8] claimed by Selma Altinok and Samet Sarioglan.We

observe that graphs which are isomorphic to each other have same or equivalent basis

criteria since smallest leading entries of flow-up splines of these graphs are same and thus

formula, QG is also same for these graphs.

Further investigations on arbitrary graphs open a possibility of finding proof for general

basis criteria for spline modules on arbitrary graphs over any GCD domain.


