

School: School of Science
Program/s: Master of Science
Year: 2nd Semester: I

Examination: End Semester Examination

Examination year: December - 2022

Course Code: AIS101 **Course Name:** Biophysics and Biostatistics

 Date:
 02/12/2022
 Total Marks:
 40

 Time:
 08:30 AM to 10:30AM
 Total Pages:
 2

Instructions:

→ Write each answer on a new page

→ Draw neat and well-labelled diagrams wherever required

→ * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	100 E	Details		Marks	COs*	BTL#
Q.1	Ch	oose the correct option.	7	12	COI	BTL1
2			N		CO2	BTL2
	1.				CO3	BTL3
		a. policy documents	d. None of the above		CO4	
		c. research articles	d. None of the above		CO5	
	2.	is/are the example/s of ordinal data.				
		a. race/gender	b. rankings			
=		c. weight/height measures	d. All of the above			
		c. Weight/height measures				
	3.	is/are the example/s of continuous dat				
		a. race/gender	b. rankings			
			d. All of the above			
		c. Weight/ height moudares				
	4.	represents an over all reflection of a sample				
		a. mean	b. median	. =		
		c. mode	d. None of the above			
			5 14			
	5.	reflects diversity/spread of your data points in your				
		sample/population				
		a. range	b. variance			
		c. standard deviation	d. All of the above			
APACT.	6.	C. Standard deviation				
	U.	basis of receptor-ligand interaction.				
		- 65 its absorbed graphy	b. ion-exchange chromatography			
100			d. none of the above			
1 2		c. ger-permeation chromatography	u. Holic of the above			1
3 V						
, ;				-		

1	7. Proteins and nucleic acids absorb hig	hest at andrespectively		1	
	a. 260nm and 280 nm	b. 280 and 260 nm			
	c. 340 and 280 nm	d. none of the above			
	8. The Rf value in paper chromatograph	v referes to			4
	The M value in paper emolitatograph			-	
	a. running front	b. reference for		- "	
	c.relative front	d. none of the above			1
	9is used as a source for electrons				
	a. Osmium tetroxide	b. tungsten filament		37	
	c. platinum filament	d. All of the above			
	10represents an over all differen				
	a. mean	b. median			
	c. mode	d. None of the above			
	11. In fluorescence microscopy, transmi	ssion of fluorescence while retardation of			
	excitation light is achieved by_				
	a. Emission filter c.Phase plate	b. Excitation filter d. none of the above			
-	c.i hase place	d. none of the above			
	12. During primary data collection	method faces with the limitation of			
	literacy standards of the subjects.				
	a. key-information interview	b. In-depth interview			
	c. case studies	d. none of the above			7.0
Q.2	Answer the following in short.				
	Define data.				
	2. What is the working principle of pl			1	
		lase contrast microscopy?		COI	
	3. What are the limitations of fluoresc	• •		CO1 CO2	BTLI
	4. What are the applications of gel pe	cence microscopy? rmeation chromatography?	12	CO2 CO3	BTL2
	4. What are the applications of gel pe5. Enlist disadvantages of data representations.	cence microscopy? rmeation chromatography? entation using tables.	12	CO2 CO3 CO4	1
	4. What are the applications of gel pe5. Enlist disadvantages of data repres6. Define continuous type of data sets	rence microscopy? rmeation chromatography? entation using tables.	12	CO2 CO3	BTL2
	 What are the applications of gel pe Enlist disadvantages of data repression. Define continuous type of data sets What are nominal and ordinal data 	rence microscopy? rmeation chromatography? entation using tables. types?	12	CO2 CO3 CO4	BTL2
	4. What are the applications of gel pe5. Enlist disadvantages of data repres6. Define continuous type of data sets	rence microscopy? rmeation chromatography? entation using tables. types?	12	CO2 CO3 CO4	BTL2
Q.3	 What are the applications of gel pe Enlist disadvantages of data repression. Define continuous type of data sets What are nominal and ordinal data 	rence microscopy? rmeation chromatography? entation using tables. types?	12	CO2 CO3 CO4	BTL2
Q.3	 What are the applications of gel pe Enlist disadvantages of data repression. Define continuous type of data sets What are nominal and ordinal data What are the key differences between Answer the following in detail.	rmeation chromatography? rmeation using tables. types? een mean, median and mode? Any four	12	CO2 CO3 CO4 CO5	BTL2
Q.3	 What are the applications of gel pe Enlist disadvantages of data repress Define continuous type of data sets What are nominal and ordinal data What are the key differences between Answer the following in detail. How radioactivity is helpful in dec 	rmeation chromatography? rmeation using tables. types? een mean, median and mode? Any four iphering aging of organic remains?	12	CO2 CO3 CO4 CO5	BTL2 BTL3
Q.3	 What are the applications of gel pe Enlist disadvantages of data represence. Define continuous type of data sets What are nominal and ordinal data What are the key differences between the following in detail. How radioactivity is helpful in dec Enlist key features of Transmission microscopy. 	rmeation chromatography? rmeation using tables. types? ten mean, median and mode? Any four tiphering aging of organic remains? telectron microscopy and Scanning electron		CO2 CO3 CO4 CO5	BTL2 BTL3
Q.3	 What are the applications of gel pe Enlist disadvantages of data represence. Define continuous type of data sets What are nominal and ordinal data What are the key differences between the following in detail. How radioactivity is helpful in dec Enlist key features of Transmission microscopy. What are the limitations of paper of 	rmeation chromatography? rmeation using tables. types? ren mean, median and mode? Any four iphering aging of organic remains? a electron microscopy and Scanning electron thromatography?	12	CO2 CO3 CO4 CO5	BTL2 BTL3 BTL1 BTL2
Q.3	 What are the applications of gel pe Enlist disadvantages of data represence. Define continuous type of data sets What are nominal and ordinal data What are the key differences between the following in detail. How radioactivity is helpful in dec Enlist key features of Transmission microscopy. What are the limitations of paper of Explain in detail working principle 	rmeation chromatography? rmeation using tables. types? ren mean, median and mode? Any four iphering aging of organic remains? a electron microscopy and Scanning electron thromatography? of UV spectroscopy.		CO2 CO3 CO4 CO5	BTL2 BTL3
Q.3	 What are the applications of gel pe Enlist disadvantages of data represence. Define continuous type of data sets What are nominal and ordinal data What are the key differences between the following in detail. How radioactivity is helpful in dec Enlist key features of Transmission microscopy. What are the limitations of paper of Explain in detail working principle 	rmeation chromatography? rmeation using tables. types? ren mean, median and mode? Any four iphering aging of organic remains? a electron microscopy and Scanning electron thromatography?		CO2 CO3 CO4 CO5	BTL2 BTL3 BTL1 BTL2