School: School of Science Program/s: Master of Science Year: 2nd Semester: I **Examination:** End Semester Examination **Examination year:** December - 2022 **Course Code:** AIS101 **Course Name:** Biophysics and Biostatistics Date: 02/12/2022 Total Marks: 40 Time: 08:30 AM to 10:30AM Total Pages: 2 ## Instructions: → Write each answer on a new page → Draw neat and well-labelled diagrams wherever required → * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping | Q.
No. | 100 E | Details | | Marks | COs* | BTL# | |-----------|-------|---|--------------------------------|-------|------|------| | Q.1 | Ch | oose the correct option. | 7 | 12 | COI | BTL1 | | 2 | | | N | | CO2 | BTL2 | | | 1. | | | | CO3 | BTL3 | | | | a. policy documents | d. None of the above | | CO4 | | | | | c. research articles | d. None of the above | | CO5 | | | | 2. | is/are the example/s of ordinal data. | | | | | | | | a. race/gender | b. rankings | | | | | = | | c. weight/height measures | d. All of the above | | | | | | | c. Weight/height measures | | | | | | | 3. | is/are the example/s of continuous dat | | | | | | | | a. race/gender | b. rankings | | | | | | | | d. All of the above | | | | | | | c. Weight/ height moudares | | | | | | | 4. | represents an over all reflection of a sample | | | | | | | | a. mean | b. median | . = | | | | | | c. mode | d. None of the above | | | | | | | | 5 14 | | | | | | 5. | reflects diversity/spread of your data points in your | | | | | | | | sample/population | | | | | | | | a. range | b. variance | | | | | | | c. standard deviation | d. All of the above | | | | | APACT. | 6. | C. Standard deviation | | | | | | | U. | basis of receptor-ligand interaction. | | | | | | | | - 65 its absorbed graphy | b. ion-exchange chromatography | | | | | 100 | | | d. none of the above | | | | | 1 2 | | c. ger-permeation chromatography | u. Holic of the above | | | 1 | | 3 V | | | | | | | | , ; | | | | - | | | | 1 | 7. Proteins and nucleic acids absorb hig | hest at andrespectively | | 1 | | |-----|---|---|----|--------------------------|------------------------------| | | | | | | | | | a. 260nm and 280 nm | b. 280 and 260 nm | | | | | | c. 340 and 280 nm | d. none of the above | | | | | | 8. The Rf value in paper chromatograph | v referes to | | | 4 | | | The M value in paper emolitatograph | | | - | | | | a. running front | b. reference for | | - " | | | | c.relative front | d. none of the above | | | 1 | | | 9is used as a source for electrons | | | | | | | a. Osmium tetroxide | b. tungsten filament | | 37 | | | | c. platinum filament | d. All of the above | | | | | | 10represents an over all differen | | | | | | | a. mean | b. median | | | | | | c. mode | d. None of the above | | | | | | 11. In fluorescence microscopy, transmi | ssion of fluorescence while retardation of | | | | | | excitation light is achieved by_ | | | | | | | a. Emission filter
c.Phase plate | b. Excitation filter
d. none of the above | | | | | - | c.i hase place | d. none of the above | | | | | | 12. During primary data collection | method faces with the limitation of | | | | | | literacy standards of the subjects. | | | | | | | a. key-information interview | b. In-depth interview | | | | | | c. case studies | d. none of the above | | | 7.0 | | Q.2 | Answer the following in short. | | | | | | | Define data. | | | | | | | 2. What is the working principle of pl | | | 1 | | | | | lase contrast microscopy? | | COI | | | | 3. What are the limitations of fluoresc | • • | | CO1
CO2 | BTLI | | | 4. What are the applications of gel pe | cence microscopy?
rmeation chromatography? | 12 | CO2
CO3 | BTL2 | | | 4. What are the applications of gel pe5. Enlist disadvantages of data representations. | cence microscopy? rmeation chromatography? entation using tables. | 12 | CO2
CO3
CO4 | 1 | | | 4. What are the applications of gel pe5. Enlist disadvantages of data repres6. Define continuous type of data sets | rence microscopy? rmeation chromatography? entation using tables. | 12 | CO2
CO3 | BTL2 | | | What are the applications of gel pe Enlist disadvantages of data repression. Define continuous type of data sets What are nominal and ordinal data | rence microscopy? rmeation chromatography? entation using tables. types? | 12 | CO2
CO3
CO4 | BTL2 | | | 4. What are the applications of gel pe5. Enlist disadvantages of data repres6. Define continuous type of data sets | rence microscopy? rmeation chromatography? entation using tables. types? | 12 | CO2
CO3
CO4 | BTL2 | | Q.3 | What are the applications of gel pe Enlist disadvantages of data repression. Define continuous type of data sets What are nominal and ordinal data | rence microscopy? rmeation chromatography? entation using tables. types? | 12 | CO2
CO3
CO4 | BTL2 | | Q.3 | What are the applications of gel pe Enlist disadvantages of data repression. Define continuous type of data sets What are nominal and ordinal data What are the key differences between Answer the following in detail. | rmeation chromatography? rmeation using tables. types? een mean, median and mode? Any four | 12 | CO2
CO3
CO4
CO5 | BTL2 | | Q.3 | What are the applications of gel pe Enlist disadvantages of data repress Define continuous type of data sets What are nominal and ordinal data What are the key differences between Answer the following in detail. How radioactivity is helpful in dec | rmeation chromatography? rmeation using tables. types? een mean, median and mode? Any four iphering aging of organic remains? | 12 | CO2
CO3
CO4
CO5 | BTL2
BTL3 | | Q.3 | What are the applications of gel pe Enlist disadvantages of data represence. Define continuous type of data sets What are nominal and ordinal data What are the key differences between the following in detail. How radioactivity is helpful in dec Enlist key features of Transmission microscopy. | rmeation chromatography? rmeation using tables. types? ten mean, median and mode? Any four tiphering aging of organic remains? telectron microscopy and Scanning electron | | CO2
CO3
CO4
CO5 | BTL2
BTL3 | | Q.3 | What are the applications of gel pe Enlist disadvantages of data represence. Define continuous type of data sets What are nominal and ordinal data What are the key differences between the following in detail. How radioactivity is helpful in dec Enlist key features of Transmission microscopy. What are the limitations of paper of | rmeation chromatography? rmeation using tables. types? ren mean, median and mode? Any four iphering aging of organic remains? a electron microscopy and Scanning electron thromatography? | 12 | CO2
CO3
CO4
CO5 | BTL2
BTL3
BTL1
BTL2 | | Q.3 | What are the applications of gel pe Enlist disadvantages of data represence. Define continuous type of data sets What are nominal and ordinal data What are the key differences between the following in detail. How radioactivity is helpful in dec Enlist key features of Transmission microscopy. What are the limitations of paper of Explain in detail working principle | rmeation chromatography? rmeation using tables. types? ren mean, median and mode? Any four iphering aging of organic remains? a electron microscopy and Scanning electron thromatography? of UV spectroscopy. | | CO2
CO3
CO4
CO5 | BTL2
BTL3 | | Q.3 | What are the applications of gel pe Enlist disadvantages of data represence. Define continuous type of data sets What are nominal and ordinal data What are the key differences between the following in detail. How radioactivity is helpful in dec Enlist key features of Transmission microscopy. What are the limitations of paper of Explain in detail working principle | rmeation chromatography? rmeation using tables. types? ren mean, median and mode? Any four iphering aging of organic remains? a electron microscopy and Scanning electron thromatography? | | CO2
CO3
CO4
CO5 | BTL2
BTL3
BTL1
BTL2 |