School: School of Science Program/s: Master of Science Year: 2nd Semester: III **Examination:** End Semester Examination Examination year: December - 2022 Course Code: BIO301 Course Name: Bioprocessing Technology Date: 02/12/2022 Time: 08:30 to 10:30 Total Marks: 40 **Total Pages: 2** ## Instructions: → Write each answer on a new page → Draw neat and well-labelled diagrams wherever required → * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping | О. | | | Marks | co. | BTL | |----|--|--|------------|------|------| | 1 | | | all it hat | | | | .1 | Choose the correct option | | 12 | CO1 | BTL1 | | | 1 Industrial production could be how | | | CO2 | BTL | | | 1. Industrial production could be better a. aerobic | performed usingmicrobes. | | | | | | c. facultative ananerobic | b. anaerobic | | CO3 | BTL: | | | c. facultative affaffer object | d. all of the above | | CO4 | | | | 2. Theis achieved throughr | process. | | CO5 | | | | a. Higher, continuous | b. higher, fed-batch | | | | | | c. lower,continuous | d. None of the above | | | | | | was a precursor compound, that essentially triggered an era of industrial microbiology | | | | | | | a. acetone | b. acetylene | | | | | | c. isoprene | d. None of the above | | | | | | 4. Amount ofis higher inphase | | | | | | | a. air, downcommer | h oin vissa | | | | | 1 | c. media, riser | b. air, riser | | 1000 | | | | | d. None of the above | | | | | | 5. The shear stress during fermentation process could be influenced by | | | | , | | | a. ballies | b. spargers | - | 1 EV | | | | c. impellers | d. All of the above | | | | | | 6. Macrokinetic parameters during a large scale microbial production include | | | | | | | | | | | | | | a. temperature, pH, gas exchange | h ontimiging and ! | | | | | | c. rheology of process | d. None of the | | | | | | | u. None of the above | | | | | | c. rheology of process | b. optimizing media composition d. None of the above | | | | | | | h rheology | | - - | | |-----|---|--|------|---------------------------------|-------------------| | | a. aeration
c. microbial physiology | b. rheologyd. all of the above | | | | | | 8. design ofis important in reducing the size of air bubbles and distribution of media | | | | | | | a. bafflesc. spargers9. Immobilization of enzyme can be achieve | b. impellers
d. none of the above
d through_ | | | 13, | | | a. physical interaction only
c. ionic interaction only | b. covalent interaction only d. None of the above | 7 .y | 1 | 165 | | | 10. Immobilization using DEAE-cellulose is an a. membrane entrapped immobilization c. microencapsulation immobilization | example of
b. surface immobilization
d. All of the above | | | | | | 11. nutrient agar can be used for_ | | | | | | | a. primary screening only c. both a and b d. none of the above 12. Precipitation of citric acid with calcium leads to the formation of calcium citrate using_ | | | | | | | a. calcium phosphate
c. calcium carbonate | b. calcium chloride
d. None of the above | | | | | 2.2 | Answer the following in short. | Any six | | | | | | What is the importance of crystallization in the downstream processing of proteins? What is the difference between fed-batch and continuous fermentation process? What are the key features of solid state fermentation process? Provide key steps involved in the process of secondary screening. What are the key characteristics of disc centrifuge? What is the difference between a bubble column reactor and fluidized bed reactor? What is the importance of ball-mill among the other cell disruption methods? What is the working principle of lyophilizer? | | 12 | CO1
CO2
CO3
CO4
CO5 | BTI
BTI
BTI | | .3 | Answer the following in detail. | Any four | | CO1 | | | | Explain working principle of fluidized bed read Provide various methods for enzyme immobility | zation. | 16 | CO1
CO2
CO3
CO4 | BTI
BTI | | | 3. Provide important factors for designing a biore | eactor | | | BTL | ***********End of Question Paper********