School: School of Science Program/s: MSc Year: 1st Semester: 1st **Examination:** End Semester Examination Examination year: December 2022 Course Code: LS105 Course Name: Genetics Date: 08/12/2022 Time: 08:30 am to 10:30 am Total Marks: 40 Total Pages: 2 ## Instructions: → Write each answer on a new page. → Use of a calculator is permitted/not permitted. → *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping | Q.1 | Objective-based questions. (1M x 15Q = 15M) | Marks | COs* | RT | |------|--|-------|--|------------| | | 1. In 4 O'clock plant Mirabilis jalapa, pink flower-producing plants were produced when: | 15 | The state of s | L J | | | when: | -0 | | | | | a) 2 red flowered plants were and a | | | | | | A PILIK HOWERED DIANT Was specially to the | | | | | | c) Two white flowered plants were crossed A red flowered plants were crossed | | | | | | a) A red Howered plant was crossed and 1 | | | | | - 1 | 2. The phenotypic ratio in a monohybrid cross showing incomplete dominance is: a) 9:3:3:1 | | | | | - 1 | | | | | | - 1 | b) 1:2:1 d) 1:2:1:2:4:2:1:2:1 | | | | | 9 = | J. A pea plant producing vellow round goods is any | * | l | | | - 1 | | | | | | - 1 | The state of s | | - 1 | | | - 1 | To the year was plant is: | - 1 | - 1 | | | | a) YYRR c) YyRR
b) YYRr d) YyRr | - 1 | - 1 | | | - 12 | b) YYRr d) YyRr | | | | | - 17 | 4. According to Mendel, in a cross involving a pair of alleles, | | CO1. | | | - | a) Both alleles blend & express together in the F1 generation. | | CO2, | BT1 | | | b) Both alleles come and stay together but do not blend. | | CO3, | BT2
BT3 | | | c) Any one allele enters the F1 organism. | 1 | CO4,
CO5. | BT4 | | 5. | d) Both alleles disappear in the F1 generation. This is not a valid reason for Mondelle. | | CO6 | BT6 | | | This is not a valid reason for Mendel to select pea plants for his experiments: a) The flowers of pea plants are unisexual. | | ł | | | - 1 | b) Pea plants possess contrasting traits. | | | | | | c) Cross pollination by insects is impossible. | | | | | | d) Life span of pea plants is reasonably short. | | | | | 6. | Karyotyping require metaphase chromosome. Write true or false with proper | } | | | | 1. | justification. | | | | | 7. | | | - 1 | | | - 1 | justification. | | | | | 8. | How polygenic inheritance contributes to human genetics? | | | | | 9. | How heterokaryon helps in gene mapping. | | | | | 10. | Differentiate between G- and Q-banding. | | | | | 111. | How density gradient media help to separate blood cell? | | | | | 12. | How annotation identifies gene sequence? | | 1 | | | 13. | How marker assisted selection helps in agriculture? | | | | | 14. | Which stain is used in endospore staining? | - 1- | | | | | about in chaospore staining! | - 1 | - 1 | | | Q.2 | 15. Draw a figure of bacteriophage T4. | | | | |-----|---|-------|--------------------------------------|-------------------------------------| | 4.2 | Short allowers, IXM v EO - 4 Fam | 1 - 1 | | | | | What were the pea plant traits that Mendel studies for his experiments? appropriate examples. How will you compare tumor and normal genomes by hybridization technique? region with diagrammatic representation. How vibrio are different from spirilla? Explain differential staining based on the presence of pentidoglycan in heatering. | 15 | CO1,
CO2,
CO3,
CO4,
CO5, | BT1,
BT3,
BT5
BT6 | | Q.3 | Differentiate between old and new genome sequencing technique. Long answers. (5M x 2Q = 10M) Describe Mendelian laws with their respective examples. Design a detailed experiment to study gene X, Y, and Z on chromosome number 6th in human cell line. Explain- How will you demonstrate an ordered gene transfer using three different strains. | 10 | CO1,
CO2,
CO3,
CO4,
CO5, | BT1,
BT3,
BT4,
BT5,
BT6 | ***********End of Question Paper********