

School: School of Science
Program/s: Master of Science
Year: 2nd Semester: III

Examination: End Semester Examination

Examination year: December - 2022

Course Code: LS251 Course Name: Environmental Biotechnology

 Date:
 02/12/2022
 Total Marks:
 40

 Time:
 11:30 to 13:30
 Total Pages:
 2

Instructions:

→ Write each answer on a new page

→ Draw neat and well-labelled diagrams wherever required

→ * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q.	Details		Marks	cos.	BTL
No.			Marks	cos	BIL
Q.1	Choose the correct option		12	CO1	BTL1
	are ionic, glycolipid type biosurfactants yeast species Starmerella bombicola and Cand a. trehalo lipid c. Viscosin	s, produced by nonpathogenic lida bombicola b. rhamnolipid d. None of the above		CO2 CO3 CO4 CO5	BTL2 BTL3
	based sensors are widely utilized for recognition of organophospohorous compounds. a. enzyme based			203	54
	c. surface plasmon resonance based	d. None of the above			
	 Whole-cell biosensors can be used for the determinant. Hg Cu 	ection ofin soil. b. Zn d. all of the above)	
	Electrochemical biosensors for lead and cadmium make use of				
	a. archaeal cells c. fungal cells	b. bacterial cells d. None of the above			
	5. The first biosensor was made usingelectrode				
	a. nickel c. H2O2	b. enzymatic d. none of the above			
	 Biosurfactants chiefly possess groups that is/are responsible an overall chemistry of the molecule 				
		b. 2			
	c. 3 d. None of the above				
	7. Bulking sludge formation during waste water treatment can be formed due to				
	 a. higher COD c. massive development of filamentous bacteria 	b. higher BOD d. all of the above			

3	3. For bioxidation of chlorinated compounds, misrobas utili-			
	 For bioxidation of chlorinated compounds, microbes utilizeas source of energy 			
	a. carbon dioxide			
	c. H2S gas b. meth	f the above		
		title above		
	9is essential step in bioleaching of heavy metals			
	a. solubilization b. pred	cipitation		
	d. non	e of the above		
	10are especially useful to remove heavy metals and i			
	a. Methanotrophs h acid	ophiles		
		the above		
	11. Microbial production of in anaerobic condition mediates metal solubilization			
	a. organic acids b. pho	sphates		
	c. CO2 d. H2S			
	12 During angerobic digastion of waster con tree			
	12. During anaerobic digestion of wastes, CO2, NO3-, NO2-, Fe3+,SO42- etc. act as a. electron acceptors b. electron donors			
	b. ciced o	n donors f the above		
	a. none o	the above		
2	Answer the following in short. Any six			
	1. What are the genetic aspects of microbial environmental remediation processes?			
	2. Define BOD, COD and TOC.			
	3. How does the flocculation hinder waste water processing?			D.M.
	Provide key steps involved in the process of biomethanation.			BTL1
	 What are the key characteristics of vermicomposting and biocomposting? 			BTL2
	6. What is the difference between bioleaching and biomining?		C04 C05	
	7. What is the application of biosurfactants in environmental remediation,			
	provide suitable example.	remediation,		
	Provide basic frame work of biosensors with suitable example.			
2.3				
	Answer the following in detail. Any four			
	 What are the various levels for waste water treatment? explain in detail. Provide various methods for the treatment of gaseous waste. 		CO1	1
			CO2	
	3. Provide comparative analysis between various composting methods.		CO3	
	4. Provide schematic diagram of Sanitary landfills.		CO4	
	5. What is the role of biotechnology in environmental remediation? Explain using		CO5	
	suitable examples.	9,		