

School: School of Science Program/s: MSc Chemistry (Organic) Year: 2nd Semester: 3rd Examination: End Semester Examination

Examination year: December - 2022

Course Code: CH221 Course Name: Organic Spectroscopy

Date: 02/12/2022 **Time:** 14:30 to 16:30 Total Marks: 40 Total Pages: 4

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

→ *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Marks	cos*	BTL*
Q.1	Choose the correct answer (s) from the followings. 1. IR spectrum of an oxygen containing compound has shown three significant peaks at 2960 cm ⁻¹ , 1720 cm ⁻¹ and 750 cm ⁻¹ . The wavelength corresponding to the peak at 1720 cm ⁻¹ is a. 5.81 µm b. 6.17 µm c. 5.81 nm d. 6.17 nm	10	CO2	BT3 BT4
	 Enantiotropic protons are a. Chemically equivalent b. Magnetically equivalent c. Both (a) and (b) d. Does not give NMR signal 		C03	BT2
	 The types of transitions possible in UV-visible region for a compound with molecular formula C₂H₄O are P. n→π* Q. σ→σ* R. n→σ* S. π→π* a. P, Q, R b. Q, R c. P, S d. P, Q, R, S 		CO1	BT3 BT4
	 Which of the following statement is false for mass spectroscopy? a. Mass spectroscopy is used to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules b. Particle are characterized by their mass to charge ratios (m/z) and relative abundances c. This technique basically studies the effect of ionizing energy on molecules d. This technique can be used on all state of matter 		CO4	BT3

	5.	Which one of the following have weak parent ion (molecular ion) peak?		CO4	втз
		b. Amines			
		c. Alicyclic compounds			
		d. Aromatic compounds			
	6.	Chemical shifts originate from		CO3	BT2
		a. magnetic momentum			612
		b. electron shielding			
		c. free induction decayd. scalar coupling (<i>J</i>-coupling)			
	7.	The Fourier transformation is a mathematical conversion of		CO3	BT1
		a. Time domain to frequency domain			
		b. Frequency domain to time domain			
		c. Time domain to concentration domain d. Concentration domain to time domain			
		d. Concentration domain to time domain			
	8.	When the λ_{max} of a compound shift to a shorter wavelength on certain		CO1	BT2
		treatment, the compound is said to have undergone			
		a. Hypochromic effect			
		b. Hypsochromic effect (Blue shift)c. Bathochromic Shift (Red shift)			
		d. Hyperchromic Shift			
	9.	How many numbers of peaks are possible in proton NMR spectra of the following cyclic compound? H ₂ C— Bromocyclobutane		СО3	BT3 BT4
		a. Two			
		b. Three			
		c. Four			
		d. Five			
	10.	Separation of ions in mass spectrometer take place on the basis of which of the following?		CO4	BT2
		a. Mass			
		b. Charge			
		c. Molecular weight			
		d. Mass to charge ratio			
Q.2	Answer	the following questions. (Any Four)	8	CO4	BT3
					BT4
	(i) (a) Methyl chloride and Methyl bromide display in their mass spectra pairs of peaks (M* and M+2). Why? (b) What is the intensity (approx.) ratio of M*: M+2 in methyl chloride and methyl bromide?				
	(ii) Mae	is spectrum of <i>n</i> -hexane shows fragment ions at $m/z=71$, 57, 43 and 29. Show			
	the	fragmentation of <i>n</i> -hexane corresponds to fragment ions at $m/z = 71, 57, 43$ and			
	(iii) Mas	is spectrum of 2-pentanone shows fragment ions at $m/z=86,71,58$ and 43. Show			
	the	fragmentation of 2-pentanone corresponds to fragment ions at $m/z=86$, 71, 58			
	and				

	 (iv) Mass spectrum of methyl butanoate shows fragment ions at m/z=74, 71, 59 and 43. Show the fragmentation of methyl butanoate corresponds to fragment ions at m/z=74, 71, 59 and 43. (v) The mass spectrum of Anisole (methyl phenyl ether) shows peaks at m/z 93, 65, 78 and 77. Show the mass fragmentation of Anisole corresponds to above mentioned m/z values. 			
Q.3	Do as directed. (Any Three)	6		
	(i) The carbonyl stretching absorptions for the following lactones are 1760 cm ⁻¹ , 1745 cm ⁻¹ and 1720 cm ⁻¹ . Match the absorptions with the appropriate structure and justify your choice.		C02	BT3 BT4 BT5
	(ii) Assign each of the following pairs of absorptions to one of the compounds below: (a) 1865 and 1780 cm ⁻¹ (b) 1815 and 1750 cm ⁻¹ (c) 1775 and 1720 cm ⁻¹ (iii) (iii) (iiii)		COZ	BT3 8T4 BT5
	(iii) For UV light of wavelength 315 nm, calculate (a) frequency of this light (b) the amount of energy absorbed by one molecule when it interacts with this light (c) the amount of energy absorbed by one mole of substance.		C01	BT3 BT4
	(iv) An unknown compound is believed to have either structure A or B. Its UV-spectrum shows λ _{max} at 320 nm (ethanol). What could be its likely structure?		CO1	BT3 BT4 BT5
Q.4	 Do as directed. (Any Four) Note: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, dd = doublet of doublet (i) The proton NMR data of a compound with formula C₆H₅NCl₂ is given. The normal corbon-13 and the DEPT experimental results are tabulated. The infrared spectrum shows peaks at 3432 and 3313 cm⁻¹ and a series of medium-sized peaks between 1618 and 1466 cm⁻¹. Draw the structure of this compound and justify. ¹H NMR (δ ppm): 4.4 (bs, 2H), 6.55 (t, 1H), 7.15 (d, 2H) 	16	CO3	BT3 BT4 BT5
	Normal Carbon (ppm) DEPT-135 DEPT-90 118 Positive Positive 119.5 No peak No peak 128 Positive Positive 140 No peak No peak			BT3
	 (ii) An organic compound, C₆H₈O shows the following spectral data: UV: λ_{max} 225 nm (ε = 10,000), 318 nm (ε = 40) MS: Molecular ion at m/z = 96, base peak at m/z = 68. IR: A strong band at 1690 cm⁻¹ ¹H NMR (δ ppm): 1.54 (m, 2H), 1.94 (q, 2H), 3.16 (t, 2H) 5.9 (d, 1H), 7.0 (m, 1H) 		CO3	BT4 BTS
	Propose the structure for this compound with explanation (explanation necessary).			1

(iv) The proton NMR data of a compound with formula C₅H₁₀O is listed. The normal C03 carbon-13 and the DEPT experimental results are tabulated. The infrared spectrum HT4 HT5 shows a broad peak at about 3340 cm-1 and a medium size peak at about 1651 cm-1. Draw the structure of this compound and justify. ¹H NMR (δppm): 1.75 (s, 3H), 2.15 (s, 1H), 2.3 (t, 2H), 3.7 (t, 2H), 4.8 (d, 1H), 4.9 (d, 1H) Normal Carbon (ppm) DEPT-135 DEPT-90 22.2 Positive No peak 40.9 Negative No peak 60.2 Negative No peak 112.5 Negative No peak 142.3 No peak No peak (v) The proton NMR data, ¹H NMR spectrum and infrared spectra data for a compound BT3 BT4 CO3 with formula $C_5H_8O_2$ is given below. Draw the structure of this compound and justify. ¹H NMR (δ ppm): 2.1 (s, 3H), 4.5-4.6 (m, 2H), 5.1-5.25 (m, 1H), 5.25-5.5 (m, 1H), 5.75-6.25 (m, 1H) IR spectrum has following bands (cm-1): 3070, 2987, 2895, 1740, 1375, 1210, 1024, 990,910. s ¹H NMR of C₅H₈O₂ 3 2 5 7 6 8 10 9 ppm

*********End of Question Paper*********