

School: School of Science

Program/s: B.Sc. (Chemistry) Year: 2nd Semester: 3rd

Examination: End Semester Examination

Examination year: December 2022

Course Code: PH204

Date: 07/12/2022

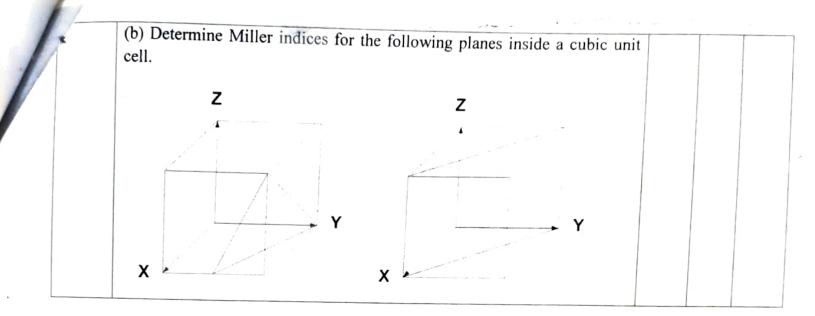
Course Name: Quantum Mechanics and Solid State Physics

Time: 11.30 am to 01:30 pm

Total Marks: 40 Total Pages: 3

## Instructions:

→ Write each answer on a new page.


→ Use of a scientific calculator is permitted.

→ Write answers to the questions in sequence.

→ \*COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

| Q.1 | Answer Any Six of the following questions in brief.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks | COs'                     | BTL                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|---------------------------------|
|     | (a) With the Late of the control of | 12    |                          | DIL                             |
|     | (a) With the help of neat diagram, describe all the unit cells in orthorhombic and hexagonal Bravais lattices. Write down the corresponding lattice parameters for each Bravais lattice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                          |                                 |
|     | (b) Show that the 5-fold rotational symmetry is not possible for a crystal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                          |                                 |
|     | (c) Momentum operator, $\hat{P}$ acts on a wave function $\Psi(x,t) = 2x^4 e^{-i\omega t}$ . What is the outcome of $\hat{P}\Psi$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                          |                                 |
|     | (d) Define normalization condition for a wave function $\Psi(x)$ and explain its physical interpretation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | CO1<br>CO2<br>CO3<br>CO4 | 8T1<br>8T2<br>8T3<br>8T4<br>8T5 |
|     | (e) Show that the commutator of $\hat{x}$ and $\hat{p}$ is equal to $i\hbar$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                          | 0.5                             |
|     | (f) Explain the meaning of degenerate eigen functions. With the help of neat diagrams explain the degeneracy in d-orbitals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                          |                                 |
|     | (g) What is the difference between ABABAB and ABCABC type of packing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                          |                                 |
|     | (h) What are acoustic and optical phonons?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                          |                                 |
|     | Consider a quantum particle trapped inside a one dimensional potential well of width L. Using time independent Schroedinger equation, derive expression for allowed normalized wave functions and corresponding energy eigenvalues. Also plot wave functions as well as probability densities for ground and first excited state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | CO1<br>CO2<br>CO3        | BT2<br>BT3<br>BT4<br>BT5<br>BT6 |

| Time independent Scl                                             | nroedinger equation can be written as:                                                                                |    |                           |                                 |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----|---------------------------|---------------------------------|
| $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi(x)$          |                                                                                                                       |    |                           |                                 |
| Q.3 In hexagonal close packing fact                              | packed structure show that c/a is 1.633 and hence tor for hexagonal close packed structure.                           | 3  |                           |                                 |
|                                                                  | OR                                                                                                                    |    |                           |                                 |
| A light beam of wav<br>an experiment to stud<br>1.5 V, calculate | elength $\lambda$ =4000 Å falls on a metallic surface used in dy the photoelectric effect. If the stopping voltage is |    | CO1<br>CO2<br>CO3<br>CO4  | BT1<br>BT2<br>BT3<br>BT4<br>BT5 |
| i the work function o                                            | f the surface.                                                                                                        |    |                           | 5.5                             |
| ii the maximum wa<br>emission.                                   | welength of light that will cause the photoelectric                                                                   |    |                           |                                 |
| Q.4 Write short notes on                                         | Any Four of the following topics.                                                                                     | 16 |                           |                                 |
| (a) Van der Waals Bo                                             | nd and Hydrogen Bond                                                                                                  |    |                           |                                 |
| (b) Frank Hertz Exper                                            | iment                                                                                                                 |    |                           | 22.                             |
| (c) Lattice vibrations lattice                                   | and phonons in one dimensional infinite monoatomic                                                                    |    | CO1,<br>CO4<br>CO5<br>CO6 | BT1<br>BT2<br>BT3<br>BT4<br>BT5 |
| (d) Direct and Indirect                                          | t bandgap semiconductors                                                                                              |    |                           |                                 |
| (e) Hall Effect                                                  |                                                                                                                       |    |                           |                                 |
| Q.5 (a) Determine Mille unit cell.                               | r indices for the following directions inside a cubic                                                                 | 4  |                           |                                 |
| X                                                                | Y                                                                                                                     |    | CO4                       | BT1<br>BT2<br>BT3<br>BT4<br>BT5 |



\*\*\*\*\*\*\*\*\*\*\*\*End of Question Paper\*\*\*\*\*\*\*\*