

School: School of Science
Program: B.Sc. in Chemistry
Year: 1st
Examination: End Sem Examination
Examination year: December - 2022

Course Code: CH104

Course Name: Inorganic Chemistry-1

Date: 08/12/2022

Time: 08:30 am to 10:30 am

Total Marks: 40 Total Pages: 2

## Instructions:

→ All Sections are compulsory.

→ Please read the questions carefully and answer accordingly.

→ Draw a neat and labeled diagram wherever necessary.

## Bloom's Taxonomy Levels

1. Remember

2. Understand

3. Application 4. Analysis

5. Evaluation

6. Creation

| i.<br>ii.<br>iii. | Define the shape of $ClF_3$ and $ICl_2$ as per the VESPER theory.<br>Explain the hydrogen bonding in details (a) Hydrochloric acid and Dimethyl ether (b) O-nitrophenol.<br>Determine the configuration (in the form $t_{2g}$ , eg as appropriate), the number of unpaired electrons, and the crystal field stabilization energy as a multiple of $\Delta_0$ or $\Delta_T$ for each of the following complexes to decide, where relevant, which are likely to be strong-field and which are | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Dimethyl ether (b) O-nitrophenol. Determine the configuration (in the form $t_{2g}$ , eg as appropriate), the number of unpaired electrons, and the crystal field stabilization energy as a multiple of $\Delta_0$ or $\Delta_T$ for each of the following complexes to decide, where relevant, which are likely to be strong-field and which are                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| iii.              | Determine the configuration (in the form $t_{2g}$ , eg as appropriate), the number of unpaired electrons, and the crystal field stabilization energy as a multiple of $\Delta_0$ or $\Delta_T$ for each of the following complexes to decide, where relevant, which are likely to be strong-field and which are                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| iv.               | weak-field complexes:  (a)[Co(NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup> ; (b) [Ni(CO) <sub>4</sub> ].  On basis of VBT, find out the type of hybridisation, magnetic moment, spin multiplicity and geometry of [Ni (DMG) <sub>2</sub> ] <sup>-</sup> .                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO1<br>CO2<br>CO3<br>CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BT1<br>BT2<br>BT3<br>BT5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| v.<br>vi.         | Write in detail about tritration of strong acid against a strong base also explain the $pH$ titration curves of different acids with sodium hydroxide. Write in detail about theory of Acid-Base Indicators in detail.                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ii.<br>iii.       | Write about limitations of VBT.  What mean by Common ion effect explain it with suitable example.                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | vi.  Vi.  Answ i. ii.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>iv. On basis of VBT, find out the type of hybridisation, magnetic moment, spin multiplicity and geometry of [Ni (DMG)<sub>2</sub>].</li> <li>v. Write in detail about tritration of strong acid against a strong base also explain the pH titration curves of different acids with sodium hydroxide.</li> <li>vi. Write in detail about theory of Acid-Base Indicators in detail.</li> <li>Answer in brief. (Any Five, each carry 02 marks)</li> <li>i. Explain the shape of BeH<sub>2</sub>.</li> <li>ii. Write about limitations of VBT.</li> <li>iii. What mean by Common ion effect explain it with suitable example.</li> </ul> | <ul> <li>iv. On basis of VBT, find out the type of hybridisation, magnetic moment, spin multiplicity and geometry of [Ni (DMG)<sub>2</sub>].</li> <li>v. Write in detail about tritration of strong acid against a strong base also explain the pH titration curves of different acids with sodium hydroxide.</li> <li>vi. Write in detail about theory of Acid-Base Indicators in detail.</li> <li>Answer in brief. (Any Five, each carry 02 marks)  i. Explain the shape of BeH<sub>2</sub>.</li> <li>ii. Write about limitations of VBT.</li> <li>iii. What mean by Common ion effect explain it with suitable example.</li> </ul> | iv. On basis of VBT, find out the type of hybridisation, magnetic moment, spin multiplicity and geometry of [Ni (DMG) <sub>2</sub> ].  v. Write in detail about tritration of strong acid against a strong base also explain the pH titration curves of different acids with sodium hydroxide.  vi. Write in detail about theory of Acid-Base Indicators in detail.  Answer in brief. (Any Five, each carry 02 marks)  i. Explain the shape of BeH <sub>2</sub> .  ii. Write about limitations of VBT.  iii. What mean by Common ion effect explain it with suitable example. |

| 1    |      | hydrolysis.                                                                                                           |            |            |  |  |  |
|------|------|-----------------------------------------------------------------------------------------------------------------------|------------|------------|--|--|--|
| 1    | v.   | Draw the crystal field energy diagram of [Cu(Cl) <sub>6</sub> ] <sup>4-</sup> .                                       |            |            |  |  |  |
|      | vi.  | Discuss the factors that contribute to the preference for forming either a                                            |            |            |  |  |  |
|      |      | high or a low-spin d4 complex.                                                                                        |            |            |  |  |  |
| Q.3. | Answ | 05                                                                                                                    | BT1<br>BT2 |            |  |  |  |
|      | i.   |                                                                                                                       |            |            |  |  |  |
|      | ii.  | What will be the coordination number of NaCl?                                                                         |            | BT3<br>BT5 |  |  |  |
|      | iii. | How many coordinating sites are there in EDTA?                                                                        |            | BT4        |  |  |  |
|      | iv.  | Give definition of acid-base on the besis of Arrhenius Concept.                                                       |            |            |  |  |  |
|      | v.   | What will be the solution pH if we do the anionic hydrolysis.                                                         |            |            |  |  |  |
| Q.4  | Answ | 05                                                                                                                    |            |            |  |  |  |
|      | i.   | An acid base titration involves a,                                                                                    |            |            |  |  |  |
|      |      | (a) Composition reaction (b) Neutralization reaction (c)                                                              |            |            |  |  |  |
|      |      | Decomposition reaction (d) Non of these.                                                                              |            |            |  |  |  |
|      | ii.  | What will be the pH of solution having concentration of H <sup>+</sup> ions 10 <sup>-4</sup> M.                       |            |            |  |  |  |
|      |      | (a) 4 (b) 5 (c) 10                                                                                                    |            |            |  |  |  |
|      |      | (d) Non of these                                                                                                      |            |            |  |  |  |
|      | iii. | In case of Octahedral Complexes what will be the ground state orbital,                                                |            |            |  |  |  |
|      |      | (a) $e_g$ orbitals (b) $t2g$ orbitals (c) $e_g$ and $t_{2g}$                                                          |            |            |  |  |  |
|      |      | orbitals (d) Non of these                                                                                             |            |            |  |  |  |
|      | iv.  | In case of $[Co(H_2O)_6]^{2+}$ what will be the hybridization.                                                        |            |            |  |  |  |
|      |      | (a) sp (b) $sp^2$ (c) $sp^3d^2$                                                                                       |            |            |  |  |  |
|      |      | (d) Non of these                                                                                                      |            |            |  |  |  |
|      | v.   | $[KK(\sigma 2s_b)^2(\sigma 2s^*)^2(\pi z_b)^2(\pi x_b = \pi y_b)^4(\pi x^* = (\pi y^*)^2(\pi z^*)]$ is the electronic |            |            |  |  |  |
|      |      | configuration of which molecule.                                                                                      |            |            |  |  |  |
|      |      | (a) $O_2$ (b) $F_2$ (c) $N_2$                                                                                         |            |            |  |  |  |
|      |      | (d) Non of these                                                                                                      |            |            |  |  |  |

| End of | Question | Paper |
|--------|----------|-------|
|--------|----------|-------|