School: School of Science Program: B. Sc. (Elective Course) Year: 3rd Semester: 5th Examination: End Semester Examination Examination year: December - 2022 Course Code: SE218 Course Name: Introduction to Polymer Science and Engineering Date: 07/12/2022 Total Marks: 40 Time: 14:30 to 16:30 pm Total Pages: 2 ## Instructions: → Write each answer on a new page. → Use of a calculator is not required. → * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping | Q.
No. | Details | Marks | COs* | BTL# | |-----------|---|-------|-----------------------------|---------------------| | Q.1 | Q. Match the following (write complete options in answer sheet) Sr. No. Column A 1 Number average 2 Weight average 3 Average molecular weight 4 Fractional method 5 Relative method 6 Gel Permeation 6 chromatography 7 Distillation 8 Light scattering 9 Ultracentrifugation | 5 | COI | BT1,
BT2,
BT3 | | Q.2 | Fill in the blanks (Write complete statements in answer book) The term n in polymerization refers to The Zeigler Natta catalyst is Two different methods used to determine viscosity is and, respectively. Primary recycling of plastics is also known as If a constant load is applied and later when the stress is released, the deformation is reversible in nature. This type of deformation is known as Full form of HDPE is | 7 | CO1,
CO2,
CO3,
CO4 | BT1,
BT2,
BT3 | | | 7. Refractive index is related to number average molecular weight. | | | | |-----|--|----|-----------------------------|---------------------| | Q.3 | Answer the following a) Discuss composites, its properties and various terms associated to composites. b) Define thermoplastic and thermosetting polymers with examples. c) Discuss viscoelastic behaviour of Polymers. d) State the differences between addition and condensation polymerization. | 8 | CO1,
CO2,
CO3,
CO4 | BT1,
BT2,
BT3 | | Q.5 | (a) Discuss viscosity and various methods to determine with appropriate diagrams and formulas. (b) Explain free radical and ionic polymerization in detail with an example. (c) Discuss the theory of crystallization, glass transition temperature and melting behaviour of polymers in detail. (d) Discuss plastic recycling and various methodology used in recycling. (e) Calculate M_n, M_w and M_z for a polymer where N₁, N₂, M₁ and M₂ is 30, 100, 900 and 6000, respectively. | 20 | CO1,
CO3,
CO4 | BT1,
BT2,
BT3 | ************End of Question Paper********