

School: School of Science
Program: B.Sc. in Chemistry
Year: 3rd Semester: V

Examination: End Semester Examination

Examination year: December - 2022

Course Code: CH302

H302

Course Name: Phase Equilibria, Chemical Kinetics & Catalysis

Date: 12/12/2022

Time: 14:30 am to 16:30 pm

Total Marks: 40 Total Pages: 2

Instructions:

→ Write each answer on a new page.

Use of a calculator is not required.

→ * COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Marks	COs*	BTL
Q.1	Answer the following		1	
	 Acid catalyzed hydrolysis of methyl acetate is a pseudo first order reaction. Justify. 			
	2) Copper (Cu) and gold (Au) can form wide range of solid solution whereas tin		COI,	BT1,
	(Sn) and antimony (Sb) cannot.	9	CO2,	BT2, BT3.
	3) Define the terms adsorption and absorption. Distinguish between chemical		CO5 .	BT4.
	adsorption and physical adsorption. Discuss the various applications of adsorption in industry and in everyday life.			BT5
Q.2	Chose the most appropriate answer from the options provided			
1.4	A. On a two component solid-liquid phase diagram, an isopleth indicates which of the following?			
	a) A region where the temperature is constant			
	b) An area below which only the solid phase exists			
	c) An area above which only the liquid phase exists			
	d) A region where the composition of the system is constant			
	B. A reaction involving gaseous reactants requires the presence of a strip of Division		CO1,	BT1,
	in the reaction vessel. This is an example of what kind of catalysis?	4	CO2,	BT2,
	a. Homogeneous b. Autocatalysis		CO3.	BT3.
	c. Biocatalysis		CO4 ·	BT4
	C. The promoters added to the iron catalyst used in Haber process for synthesis of ammonia are			
	a) K ₂ O, Al ₂ O ₃ and CaO b) K ₂ O, Al ₂ O ₃ and CeO ₂			
	c) SiO ₂ , Al ₂ O ₃ and CaO d) K ₂ O. Al ₂ O ₃ and RaO			
_ 1	D. A saturated solution of sodium chloride is a			
	a) one phase system b) two phase system			
	c) three phase system d) none of these			

	From the abo	ove data, pro	ve that the hy	drolysis of m	ethyl acetate	is a first-			
m1 o used		9.6	12.1	13.1	14.8	21.1			
	e (minutes)	0	75	120	180	oo			
against a standard solution of sodium hydroxide. The following data were obtained:									BT
	against a sta	ndard solution	on of sodium	hydroxide. Ti	he following	data were	6	CO4	BT3
	ng, titrated		CO3,	BT2					
	placed in a thermostat water bath maintained at 303 K. 5 ml of the reaction								ВТ
2	2) 5 ml of Methyl acetate was added to a flask containing 100 ml of 0.1M HCl								
	mol ⁻¹ .			<u>.,</u>					
			m 298 K. Calo						
1) The rate constant of a chemical reaction doubles for an increase of 10 K in									
Ansv	ver the followin		matur						
separation of metals from their mixture.									
system) and label the regions. Define: Eutectic Point, Eutectic Composition and Eutectic Temperature. Explain the significance of this diagram in									
D. Draw neatly the phase diagram of a simple eutectic system (two component system) and label the regions. Define: Extentia Component components.									
C. Draw a detailed energy profile diagram for an exothermic reaction. Define									
second-order reaction.									
B. What do you understand by a second order reaction? Cite a chemical reaction that follows second order reaction kinetics. Derive the integrated rate law expression for a second-order reaction when both the reactants are same and express the units of rate constant. Derive expression for the half life of a									
involved. State and explain applications of water phase diagram.									
system) and label the regions accordingly. Discuss the phase transitions									
the phase diagram of one-component system involving a vapour phase (water									
	Answer the following in detail (Any three) A. State Gibbs Phase Rule. Define the terms involved in Gibbs Phase Rule. Draw								