

School: School of Science

Program/s: M.Sc. (Chemistry) Semester: Pmt

Year: 1st

Examination: End Semester Examination

Examination year: December - 2022

Course Code: PCH101

Course Name:

Physical Chemistry

Date: 08/12/2022

Time: 11:30 am to 1.30pm

Total Marks: 40

Total Pages: 2

Instructions:

calculations).

→ Write each answer on a new page. → Use of a calculator is permitted.

Questions					COs	BTI
Chose the most appropr 1) Match the Following	iate option	or Do as directed				
Group A	Group B			2		
1.Enzymatic Reactions	A. Chain					
2. Free radical reaction	B. Reacti	on Cross Section				+0
3.σ	C. No rela	ative orientation leads to a	a chemical reaction			
4. P=0	D. Interm	ediate Compound Format	tion Theory			
	E. Adsorp	otion Theory				
	. 55					
2) Which one of the follow	_			1		
(a) Frenkel defect is a cat	-					
(b) Frenkel defect is an anion vacancy and cation interstitial					CO1	BT1
(c) Density of solid remains unchanged in case of Frenkel defects (d) Density of a solid decreases in case of Schottky defects.					CO3	BT2
a) Density of a solid acci	cuses in cus	or benotally derects.			CO4	втз
3) Arrangement of Sulphur in zinc blende and Wurtzite structures respectively are					CO5 CO6	BT4
(a) hexagonal close packing and cubic close packing					CO7	BT5
b) cubic close packing an					107	
(d) simple cubic packing i						
(d) hexagonal close packi	ng in both th	e structures			i	
5) The distance between t attice parameter "a" is	wo successiv	ve (110) planes in a simp	ple cubic lattice with	1		
$(a)\sqrt{2}$.a (b)	$\sqrt{3}$.a	$(c)2\sqrt{2}$.a	$(d)\frac{a}{\sqrt{2}}$			
6) A sphere of radius r cm	is packed in	a box of cubical shape. V	What should be the	2		

	($(a)^{\frac{r^3}{8}}$	$(b) r^3$	(c) $2r^3$	$(d) 8r^3$			
Q.2	A	nswer any <u>four</u> qu	estions in detail.					
	A.	Discuss the activa	e					
		an expression re	d					
		standard entropy						
	B.	i.) What do you ur	it	CO1	BT1			
		types of complex		CO2	BT2			
	C.	. State and explain theories of Enzyme Catalysis. Derive Michaelis-Menten equation to					CO4	BT3 BT4
		explain kinetics	of an enzyme catalyzed	reaction. Discuss	the effect of substrat	e	CO5	D14
		concentration on E		CO6				
	D.	Define Phase tran	n	CO7				
		the mechanism o	f phase transfer catalys	sis for organic syn	thesis citing a suitable	e		
		reaction as an exa	mple. State different ap	plications of phase	transfer catalysis.	*		
	E.	Draw a schematic	diagram to illustrate po	wder crystal metho	d.			
		Explain in detail th	ne working of powder cr	ystal method and it	s applications.			
Q.3.	A	nswer the followin	ıg in brief					
		A) Explain the s	ignificance of Air to Fu	el Ratio and Lambo	da sensors with		CO4	BT1
		respect to fun	ctioning of a three-way	catalytic converter	:	9	CO5	BT2
		B) Explain the process of Raney Nickel catalyzed Hydrogenation of Alkene on						BT3 BT4

**********End of Question Paper*******

BT5

the basis of Adsorption theory.

C) Write a detailed note on different types of Crystal defects.