

School: M.Sc. in Chemistry Program: Semester: 1 Year: 1" End Sem Examination Examination: December - 2022

Examination year:

Course Name: Quantum Mechanics & Group Theory

Date: 12/12/2022 Time: 11:30 am to 1:30 pm Total Marks: 40 Total Pages: 2

DT

Course Code: CH132

Instructions:

- → All Sections are compulsory.
- → Please read the questions carefully and answer accordingly.
- ➔ Draw a neat and labeled diagram wherever necessary.

			Со	BT
 ii. Calculate table. (no iii. Find the drops fro 	the term symbols for d ¹ to d ⁵ system. The the Raman and IR active band for POCl ₃ using appropriate character to need to write character table in answer sheet) wavelength of radiation emitted by an atom when an excited electron of it am quantum level n=2 to the level n=1 consider an electron within an atom	20		BT1 BT2 BT3 BT4 BT5
v. Explain l	the energy equation for "zero point energy". how external magnetic field effect the splitting of H atom spectral line. hat, p-orbitals follow all the symmetry operations for C _{2v} point group.			
EtheneBr ii. Write abo iii. What me iv. What me v. Write abo moment vi. Write all	symmetry elements and point group for the (a) Trans-EthaneBr ₂ Cl ₂ (b)	10	CO1 CO2 CO3 CO4 CO5 CO6	BT1 BT2 BT3 BT4
Q.3. Answer i	n short	05	-	

1			
1.	The Molecule of CO ₂ belongs which point group?	-	BT1
ii.	Acetylene belongs which point group?		BT2
iii.	Hydrogen cyanide belongs to which point group?		BT3
iv.	The dual nature of wave was proposed whom.		BT4
v.	What Bohr's atomic model explain.	05	BT1
Q.4. \	Write True or False and Justify		BT2
i.	quadratic Stark effect is not arises due to a dipole moment that arises from a		BT3
	actively accurring non-symmetric distribution of electrical charge.		BT4
ii.	Anomalous Zeeman effect is caused by the interaction with the orbital magnetic		
	moment.		
	$V = -\frac{Z}{r_1} + \sum_{j=1}^{1/r_1} \frac{1/r_1}{r_1}$, here Z represent the atomic number of atom.		
iii.	, note 2 represent the sum of single		
iv.	$\hat{H} = [-1/2\sum_{i} V_{i}^{2} - \sum_{i} \frac{\tilde{z}}{r_{i}}] + 1/2\sum_{i\neq j} 1/r_{ij}$, Here second term represent the sum of single		
	electron.		
v.	$[Co(NH_3)_5]^{2+}$ does not have point of inversion.		

-----End of Question Paper-----

Character Tables

D3h	E	2C3 (z)	3C'2	$\sigma_{h}(xy)$	2S3	3 σ,	Linear functions, rotations	Quadratic functions
		+1	+1	+1	+1	+1	-	$x^{2}+y^{2}, z^{2}$
A'ı	+1	+1	-1	+1	+1	-1	Rz	-
A'2	+1	+1	0	+2	-1	0	(x , y)	(x^2-y^2, xy)
E'	+2	-1	+1	-1	-1	-1	-	-
A"1	+1	+1	1	-1	-1	+1	Z	-
A"2	+1	+1	-1	-1	+1	0	$(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}})$	(xz , yz)
F"	+2	-1	0	-2	1			

C2v	E	C2 (Z)	σ,(xz)	σ _v (yz)	Linear functions, rotations	Quadratic functions
	11	+1	+1	+1	Z	X ⁻ , y , Z
A ₁	+1	+1	-1	-1	Rz	xy
A ₂	+1	+1	+1	-1	x, R _y	XZ
B ₁	+1	-1	1	+1	y, R x	yz
B ₂	+1	-1	-1			

C _{3v}	Е	2C3 (z)	3 σ,	Linear functions, rotations	Quadratic functions $x^{2}+y^{2}, z^{2}$
Δ.	+1	+1	+1	Z	X '
	+1	+1	-1	Rz	$(x^2-y^2, xy) (xz, yz)$
E	+2	-1	0	$(\mathbf{x}, \mathbf{y}) (\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}})$	$(\mathbf{x}^2 - \mathbf{y}^2, \mathbf{x}\mathbf{y})(\mathbf{x}\mathbf{z}, \mathbf{y}\mathbf{z})$

Td	E	8C3	3C2	6S4	6 G d	Linear functions, rotations	Quadratic functions $x^2+y^2+z^2$
Δ.	+1	+1	+1	+1	+1	· -	X-+y-+Z
41	+1	+1	+1	-1	-1	-	$(2z^2-x^2-y^2, x^2-y^2)$
A ₂ F	+2	-1	+2	0	0	-	$(2Z^{-}X^{-}y, X^{-}y)$
E r.	+3	0	-1	+1	-1	$(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}}, \mathbf{R}_{\mathbf{z}})$	· (
Г) Га	+3	0	-1	-1	+1	(x , y , z)	(x y, xz , yz)

Ah	E	2C4 (z)	C ₂	2C'2	2C"2	i	2S4	σh	2σ,	2 σ _d	Linear functions, rotations	Quadratic functions
Alg	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-	x^2+y^2, z^2
A _{2g}	+1	+1	+1	-1	-1	+1	+1	+1	-1	-1	Rz	- 2 2
Big	+1	-1	+1	+1	-1	+1	-1	+1	+1	-1	-	x ² -y ²
B _{2g}	+1	-1	+1	-1	+1	+1	-1	+1	-1	+1	-	Xy (xz xz)
Eg	+2	0	-2	0	0	+2	0	-2	0	0	$(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}})$	(xz, yz)
Alu	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-	_
A _{2u}	+1	+1	+1	-1	-1	-1	-1	-1	+1	+1	Z	
Blu	+1	-1	+1	+1	-1	-1	+1	-1	-1	+1	-	-
B _{2u}	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	(x v)	-
Eu	+2	0	-2	0	0	-2	0	+2	0	0	(x , y)	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{2h}	E	C ₂	I	σ_h	Linear functions, rotations	Quadratic functions
	Ag Bg Au	1 1 1	1 -1 1	1 1 -1	1 -1 -1	R _x , R _y Z	$\Lambda, \gamma, \mathcal{L}, \Lambda \mathcal{J}$

Oh	E	8C3	6C2	6C4	$3C_2 = (C_4)^2$	i	6S4	8S6	3σh	6 0 d	Linear functions, rotations	Quadratic functions
					+1	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}+z^{2}$
Alg	+1	+1	+1	+1	+1	+1	-1	+1	+1	-1	-	-
A _{2g}	+1	+1	-1	-1	+2	+2	0	-1	+2	0	-	$(2z^2-x^2-y^2, x^2-y^2)$
Eg	+2	-1	0	0	-1	+3	+1	0	-1	-1	$(\mathbf{R}_x, \mathbf{R}_y, \mathbf{R}_z)$	-
T _{1g}	+3	0	-1	+1	-1	+3	-1	0	-1	+1	-	(xz, yz, xy)
T_{2g}	+3	0	+1	-1	+1	-1	-1	-1	-1	-1	-	-
Alu	+1	+1	+1	+1	+1	-1	+1	-1	-1	+1	-	-
A_{2u}	+1	+1	-1	-1	+1 +2	-2	0	+1	-2	0	-	-
E_u	+2	-1	0	0		-3	-1	0	+1	+1	(x, y, z)	-
Tlu	+3	0	-1	+1	-1	-3	+1	0	+1	-1	-	-
T _{2u}	+3	0	+1	-1	-1	-3		0				

E	2S4	C2 (Z)	2C'2	2 σ d	Linear functions, rotations	functions
	.1	+1	+1	+1	-	$x^{2}+y^{2}, z^{2}$
+1		11	-1	-1	Rz	-
+1	+1	+1	-1	-1	-	x^2-y^2
+1	-1	+1	+1		7	xy
+1	-1	+1	-1		$(\mathbf{x},\mathbf{y})(\mathbf{P},\mathbf{R}_{\mathbf{y}})$	(xz, yz)
+2	0	-2	0	0	(\mathbf{x}, \mathbf{y}) $(\mathbf{K}_{\mathbf{x}}, \mathbf{K}_{\mathbf{y}})$	(
	+1 +1 +1	+1 +1 +1 +1 +1 -1 +1 -1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E 234 $C2 (t)$ +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1 +1 -1 +1 +1 -1 +1	E 2.54 $C2 (c)$ +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 0	E 2.54 $C2(c)$ Image: constraint of the second

-----End of Question Paper-----