Enrollment No.____

10

tis engineering

School:School of ScienceProgram/s:Biomedical ScienceYear:4thExamination:End Semester:Examination year:December - 2022

Course Code:	BM404	Course Name:	Recombinant DNA technology and Genetic engineering Total Marks: 40
	08/12/202		Total Pages: 2
Time:	08:30 AM to	5 10:30AM	

Instructions:

➔ Write each answer on a new page

➔ Draw near and well-labelled diagrams wherever required

→ * COx Course Outcome mapping, # BTL=Bloom's Taxonomy Level mapping

Q.	D	Marks	COs	BTL [#]	
No.					
Q.1	Choose the correct option	1.00 0.11	12	COI	BTL1
	1is an example of type IIS restric		CO2 CO3	BTL2 BTL3	
	a. BsmBl	b. AluI		CO4 CO5	
	c. Sau3Al	d. None of the above		005	
	2. s an example of endo nuclease				
	a. RNases	b. DNases			
	c. Ribozymes	d. None of the above			
	 Type II restriction enzymes have				
	a. Endonuclease, methyltransferase c. Endonuclease, GTPase	b. Endonuclease, ATPase d. None of the above			
	 The EcoRI recognition sequence con between theresidues on ea 				
	a. 6, adenine and cytosine	b. 6, guanine and cytosine			
	c. 8, guanine and adenine	d. None of the above		1	
	5generate cohesive ends when	generate cohesive ends whereasgenerate blunt ends.			
	i, EcoR1, Alu1	b. Alu1, Sau3A1			
	e. BumH1,Sau3A1	d. None of the above			
	6are known as neoschiz				
	a. Sto1, Bbe1	b. BamH1,Sau3A1			
	c. EcoR1, Alu1	d. None of the above			
	T. The megaprimer method of mutager	nesis uses			

	a. Long chemically synthesized	b PCP product				
	oligonucleotides as primer	b. PCR product as a primer				
	c. Linker/adaptor sequence as a	d. None of the above				
	printer					
	phage display method.					
	a. 32P	b. protein specific antibodies				
	c. 355	d. None of the above				
	 In alpha complementationsequence r acceptor. 					
	a omega, alpha	b. alpha,omega				
	c. alpha and alpha prime	d. None of the above				
	10. pUC vector was modified from pBR322					
	a. Increase number of cloning sites	b. Increase copy number				
	 c. Increase gene size for carrying capacity 	d. None of the above				
	 vectors have highest foreign ge a. COSMID 	ne carrying capacity b. YAC				
	c. BAC	d. PHAGEMID				
	12. PCR method is utilized to device					
	 PCR method is utilized to derive u cloned gene 					
	a. Touch-down PCR	b. Hot-start PCR				
		d. Inverse PCR				
2.2	Answer the following in short.	Any six				
	What is the difference between time I					
	 What is the difference between type I Define vector. Enlist 4 key parameters 	and type II restriction enzymes?		COL		
	3. What is the significance of adaptor and	d linker in claning?		CO1 CO2	DTU	
	4. Provide a comparative between lambd	a mixer in cioning;	12	CO2 CO3	BTLI	
	5. What are the key differences between	1.2	CO4	BTL2		
	6. Explain the nomenclature of restriction		CO4 CO5	BTL3		
	7. What is the significance of modified/h	whild vectors in P. DNA technol.		005		
	8. Explain primer extension method.	yond vectors in R-DNA technology?				
.3	Answer the following in detail.	Any four				
	L. Describe alpha-complementation proc			COI		
	 Describe utility of mutagenesis in gen 	ess in detail.		CO2	BTLI	
	3. Explain hot-start PCR and Inversion P	etic engineering using a suitable example.	16	CO3	BTL2	
				CO4	BTL3	
	procedure for set	ection of recombinants.		CO5	DILJ	
	 Explain phage-display. What is its sign Explain game meriodation 	niticance in genetic engineering?		000		
_	6 Explain gene-manipulation in animals	using suitable example.				

**************End of Question Paper*********