School: School of Science Program: B. Sc. in Chemistry Year: 3rd Semester: 5th Examination: End Semester Examination Examination year: December - 2022 Course Code: CH303 Course Name: SPECTROSCOPY AND SEPARATION TECHNIQUES Total Marks: 40 Total Pages: 2 Date: 06/12/2022 Total Time: 2:30 to 4:30 pm ## Instructions: → Write each answer on a new page. → Use of a calculator is required.. → *COs=Course Outcome mapping. #BTL=Bloom's Taxonomy Level mapping | O. No. | Details | Marks | COs* | BTL" | |---------------|---|-------|---------------------|-------------------------------------| | Q. No.
Q.1 | Choose the most appropriate answers Which of the following is required for a molecule to undergo McLafferty rearrangement? (a) α-H (b) β-H (c) γ-H (d) δ-H Abundance of ¹³C in nature is % (a) 0.9 (b) 1.1 (c) 1.2 (d) 1.3 Which of the following will be inactive in IR? (a) H₂O (b) NH₃ (c) S₈ (d) SO₂ Which of the following will have the greatest wavelength? (a) microwave (b) infrared (c) X-rays (d) visible The number of NMR signals in 5-Hydroxyhexanoic acid is | 5 | CO1,
CO2,
CO4 | BT1,
BT2,
BT3,
BT4,
BT5 | | Q.2. | (a) 5 (b) 6 (c) 7 (d) 8 Match the following (Write full answers in the paper) Sr. Column A Column B No. | 9 | | | | | pumps C₈, C₁₈ column paper chromatography carrier gas change in dipole moment tungsten lamp nitrogen rule R_f reverse phase chromatography source of visible radiation helium infrared spectroscopy partition TLC nitrogen rule source of ultraviolet radiation | | CO1,
CO2,
CO4 | BT1.
BT2.
BT3,
BT4,
BT5 | | | deuterium lamp i) Odd molecular weight | | | | |-----|--|---|-------------|---| | Q.2 | Write short notes on the following (a) Pascal's Triangle in NMR spectroscopy (b) Nitrogen Rule with appropriate examples (c) Explain with hypsochromic, bathochromic, hyperchromic and hypochromic shifts. | 6 | CO2,
CO4 | BT1,
BT2,
BT3,
BT4 | | Q.3 | Answer the following (Any two) (a) Calculate the molar absorptivity coefficient of 0.2M copper sulphate solution that shows a transmittance of 15%, when a cell of 1.5 cm is used. (b) Explain the role and calculation of R _f in Thin Layer chromatography. (c) Explain mechanism for the following McLafferty Rearrangement. | 6 | CO3,
CO4 | BT1,
BT2,
BT3,
BT4,
BT5 | | Q.4 | Explain the working of High Performance Liquid Chromatography using suitable block diagram. OR Explain types of bending and stretching vibrations observed in Infrared Spectroscopy. | 5 | CO3,
CO4 | BT2,
BT3,
BT4,
BT5,
BT6 | | Q.5 | Deduce the structure of the molecule using the given NMR data. (Any three) (a) C ₆ H ₁₄ O: δ 1.0 doublet 12H, δ 3.1 septet 2H (b) C ₈ H ₁₀ O: δ 1.1 triplet 3H, δ 2.4 quartet 2H, δ 6.0 singlet 1H, δ 7.2 multiplet 4H (c) C ₄ H ₈ O ₂ : δ 1.1 triplet 3H, δ 2.4 quartet 2H, δ 3.6 singlet 3H (d) C ₈ H ₈ O ₂ : δ 3.6 singlet 3H, δ 7.3 multiplet 4H, δ 9.8 singlet 1H (e) C ₈ H ₈ O: δ 2.61 singlet 3H, δ 7.5 multiplet 5H | 9 | CO4 | BT1,
BT2,
BT3,
BT4,
BT5,
BT6 | ************End of Question Paper********