Million Providence	Enrollment No.
65	
150.020	并且同时内临时间的人。
A LA R	REFAUMSILA.
Same Lange Ve	

School:School of Engineering and TechnologyProgram/s:BTech CE, ME, EEEYear:1stExamination:End Semester:Examination year:November 2023

CME101	Course Name:	Mathematics I		
22/11/2023			Total Marker	40
10:00 am to 12:	00 noon			
	22/11/2023	course manne.	22/11/2023	22/11/2023 Total Marks:

Instructions:

 \rightarrow Write each answer on a new page.

→ Use of a calculator is permitted.

Q. No.	Details	Marks	CO'S	BTL
Q.1	Attempt the following:		CO1, CO2, CO3	1,2,3
[1]	Solve the equation for x, y, z and t, if $2 \begin{bmatrix} x & z \\ y & t \end{bmatrix} + 3 \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = 3 \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$	[04]		
[2]	Evaluate $\int_{-1}^{0} (x^3 - 2) dx$	[02]		
[3]	If $f(x, y) = xy^2 + e^{xy}$, then find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ at (1,0).	[04]		
Q.2	Attempt ANY FIVE of the following: [6 marks each]	[30]	CO1, CO2, CO3	1,2,3,5
[1]	Solve the following system of equation using Gauss elimination method: x + 2y + z = 3, $2x + 5y - z = -4$, $3x - 2y - z = 5$			
[2]	x + 2y + z = 3, $2x + 5y - z = -4$, $3x - 2y - z = 5Find eigen values and eigen vectors of matrix \begin{bmatrix} 10 & 2\\ 2 & 7 \end{bmatrix}.$			
[3]	Find the directional derivatives of the function $\emptyset = x^2 - y^2 + 2z^2$, at the point (1,2,3) in the direction of $\vec{a} = 4\hat{i} - 2\hat{j} + \hat{k}$.			
[4]	Evaluate $\int_{0}^{2} \int_{0}^{2x} (1 + x + xy) dy dx$			
[5]	Find the work done when a force $\vec{F} = (x^2 - y^2 + x)\hat{\imath} - (2xy + y)\hat{\jmath}$ displaces a particle in the xy plane from (0,0) to (1,1) along the curve $y = x$.			
[6]	If $\vec{f} = (x^2 y)\hat{\imath} + (yz^3)\hat{\jmath} - (zx^3)\hat{k}$, find $grad(div \vec{f})$ at point (1, -1, 0).			

##