Enrollment ID:

Navrachana University School of Engineering and Technology and B. Tech Civil Engineering End-Semester Examination November 2023 Fourth-year and VII-Semester Geotechnical Engineering-II and CE 302

Marks: 20

Date: 21/11/2023 Time: 10:00 am to 11:30 am (1.5 Hrs)

Instructions:

- ➔ Write each answer on a new page
- Use of a calculator is permitted
- ➔ Indian Standards: IS 6403 and IS 8009-Part 1 are allowed
- ➔ Formulations and Graphs required as a reference to solve numericals are attached with the paper

				Marks	co	BTL
 A rectangular footing of 1.5 m x 3 m is laid at a depth of 2.5 m below the ground surface. Determine the net bearing capacity using the IS 6403 				(06)	2	2,3,5
code method; assume General Shear Failure/ Local S					2	2,3,
Q2. Determine the shown in fig	ne primary settle ure below.	ement of the fou	undation due to clay layer			
		2500KN	B = 2 m and L = 3 m			
Medium sand	2 m	q = 2500 /(2*3)=	γ = 18 kN/m ³			
Dense sand		q = 2500 /(2 3) 416.66 kPa	γ = 20 kN/m ³ .			
4 m						
			γ = 22 kN/m ²			
Clayey soil			Cc = 0.33			
4 m		2				
Bedrock			$\gamma = 50 \text{ kN/m}^3$			

1

2

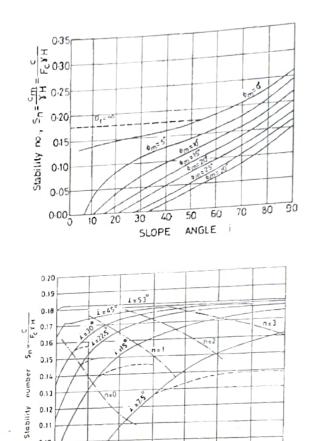
23. Determine the Coulomb active and passive force on the retaining wall shown in the Fig below. 7 m 7 m	(05)	3	2,3,5
OR Q3 . A 5m high retaining wall is shown in the figure below. Determine the Rankine active pressure on the wall. (a) Before the formation of the crack, (b) After the formation of the crack. $A = \begin{bmatrix} A \\ B \\ \gamma = 18.5 \text{ kN/m}^3 \end{bmatrix} = \begin{bmatrix} A \\ B \\ B \\ B \end{bmatrix}$		3	2,3,5
$\phi = 26^{\circ}$ C = 15kPa C = 15kPa C Q4. A long natural slope in an overconsolidated clay (c' = 10 kPa and $\phi = 25^{\circ}$, $\gamma_{sat} = 20 \text{ kN/m}^2$) is inclined at 10° to the horizontal. The water table is at the surface and the seepage is parallel to the slope. If a plane slip has developed at a depth of 5 m below the surface, determine the factor of safety. Take $\gamma_w = 10 \text{ kN/m}^3$	(05)	5	2,3,5
OR			
Q4. A vertical cut is made through a homogeneous soil mass, $c = 35kN/m$; $\phi = 20^{\circ}$ and $\gamma = 16.5 kN/m^3$). Using Culmann's method, determine the safe depth of the cut, and stability number, taking a factor of safety of 2.0.	(05)	5	2,3,5

Formulations and Graphs

$$K_{a} = \cos i \times \frac{\cos i - \sqrt{\cos^{2} i - \cos^{2} \phi'}}{\cos i + \sqrt{\cos^{2} i - \cos^{2} \phi'}}$$

$$K_{p} = \cos i \frac{\cos i + \sqrt{\cos^{2} i - \cos^{2} \phi'}}{\cos i - \sqrt{\cos^{2} i - \cos^{2} \phi'}}$$

$$K_{a} = \frac{\sin^{2}(\beta + \phi')}{\sin^{2} \beta \sin (\beta - \delta) \left[1 + \sqrt{\frac{\sin(\phi' + \delta) \sin(\phi' - i)}{\sin(\beta - \delta) \sin(\beta + i)}}\right]^{2}}$$


$$K_{p} = \frac{\sin^{2}(\beta - \phi')}{\sin^{2} \beta \cdot \sin(\beta + \delta) \left[1 - \sqrt{\frac{\sin(\phi' + \delta) \sin(\phi' + i)}{\sin(\beta + \delta) \sin(\beta + i)}}\right]^{2}}$$

$$\sigma_{h} = K_{a}\sigma_{v} - 2c\sqrt{K_{a}}$$

$$\sigma_{h} = K_{p}\sigma_{v} + 2c\sqrt{K_{p}}$$

$$K_a = (1 - \sin \phi) / (1 + \sin \phi)$$
$$K_a = (1 + \sin \phi) / (1 - \sin \phi)$$

$$\Delta s(i) = C_{c} \frac{H_{i}}{1 + c_{o}(i)} \log \left(\frac{\overline{\sigma}_{o} + \Delta \sigma_{i}}{\overline{\sigma}_{o}} \right)$$

3

0,

***************End of Question Paper**********

0.10