

School: School of Engineering and Technology

Program/s: BTech Civil Engineering

Year: || Semester: || |

Examination: End Semester Examination

Examination year: November 2023

Course Code: CE219

Course Name: Solid Mechanics

Date: 23/11/2023

Time: 13:00 to 15:00 (24 h clock)

Total Marks: 40

Total Pages:

Instructions:

Xerox, hand written notes and books are allowed

→ Use of a calculator is permitted.

→ *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Marks	COs'	BTL#
Q.1	A beam with a T-section is supported and loaded as shown in the figure. The cross section has width $b = 65$ mm, height $h = 75$ mm, and thickness $t = 13$ mm. Determine the maximum tensile and compressive stresses in the beam. $t = 13 \text{ mm}$ $L_1 = 1.25 \text{ m}$ $L_2 = 2.5 \text{ m}$ $L_3 = 1.5 \text{ m}$ $L_3 = 1.5 \text{ m}$	12	CO1, CO2	BT3 BT4
Q.2	Find the maximum tensile stress and maximum compressive stress if the cross section has the dimensions indicated and the moment of inertia about the z axis (the neutral axis) is $I = 130 \text{ cm}^4$	6	CO1, CO2	BT2, BT3, BT4
Q.3	Plot the shear force and bending moment diagrams for the following beam. Also, show the detailed expressions for the moment and shear at various sections. S (N m) A 10 m	8	CO1.CO2.CO4	BT3, BT4

Q.4	Plot the shear force diagram for the beam shown. Show the detailed expressions for the shear force equations. Sho N/m 2 m 1.5 m OR 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	6	C01,C02,C04	BT3, BT4
Q.5	Three prismatic bars, two of material A and one of material B, transmit a tensile load P (see figure). The two outer bars (material A) are identical. The cross-sectional area of the middle bar (material B) is 50% larger than the cross-sectional area of one of the outer bars. Also, the modulus of elasticity of material A is twice that of material B. What fraction of the load P is transmitted by the middle bar?	8	CO3	BT2, BT3, BT4

*********End of Question Paper**********