

 School:
 School of Engineering and Technology

 Program/s:
 Civil Engineering, SET

 Year:
 3rd

 Semester:
 5th

 Examination:
 End Semester Examination

 Examination year:
 November-2023

Course Code: CE 427 Course Name: Numerical methods with programming

Date:29/11/2023Time:01:00 pm to 03:00 pm

Total Marks: 40 Total Pages: 2

	Answer the following questions	Marks	CO	BT
Q.1	Solve the following equations with gauss Elimination with	6	CO1	
	partial pivoting method.			BT3
	4X1 + X2 - X3 = -2			BT4
	5X1 + X2 + 2X3 = 4			
	6X1 + X2 + X3 = 6			
Q.2	Solve the following equations with LU Decomposition	6	CO2	
	method. Substitute your answer into original equation and			
	check your answer.			вт2
				BT3,
	X1 + X2 + 6X3 = 7			BT4
	-X1 + 2X2 + 9X3 = 2			2
	X1 - 2X2 + 3X3 = 10			
Q.3	$x^3 - 2x - 5 = 0$, find the roots of the equation False position	5	CO3	
	method for points (1,2).			BT2
	OR			
Q.3	$X^3 - 3x - 5 = 0$, find the roots of the equation using Newton-Raphson method in the vicinity of x = 0.	5	CO3	
				ВТЗ,
				BT4
Q.4	$f(X) = X \sin x - 2$ Use bisection method to find the Roots of the equation	5	CO3	
				ΒТЗ,
				BT4
Q.5	Solve the following Linear equations by relaxation method	6	CO2	
	and check your answer.			
	8X + Y - Z = 8			BT3,
	2X + Y + 9Z = 12			BT4
	2X - 7Y + 2Z = -4			BT2

1

Q.6	Approximate the area beneath $f(x) = X^3+5X+8$ on the interval [0,3] using the Trapezoidal rule with n=6 subintervals	6	CO4	BT3. BT4 BT2
Q.7	Solve the following Linear equations by Gauss Seidal method.	6	CO4	
	5X - Y + Z = 102X + 8Y - Z = 11-X + Y + 4Z = 3			BT1 BT2