Enrollment No.___

School:School of Engineering and TechnologyProgram/s:B. Tech (ME)Year:2ndExamination:End Semester:Examination year:November 2023

Course Code:	ME222	Course Name:	Numerical Methods and Computer Programming	
	22/11/2023	000100 1101101	Total Marks:	40
Time:	1 pm to 3 pm		Total Pages:	01

Instruction:

→ Use of a calculator is permitted.

Q. No.	Details	Marks	COs'	BTL#
Q.1	 Attempt following questions. (1 Mark each) 1) Newton's method convergences faster than the Bisection method. (True / False) 2) Gauss-Elimination method solves (system of linear equations/non-linear equations) 3) What is the stopping criteria of Newton-Raphson method? 4) Newton forward interpolation formula is used for width of intervals. (equal / unequal) 	[4]	C01	BT1. BT2
Q.2	 Attempt Any THREE: (7 Marks each) 1) Given the equations, 10x + y + z = 12, 2x + 10y + z = 13, x + y + 3z = 5. Solve by Gauss elimination method. Show all steps of the computation. 2) Apply Newton-Raphson method to compute the value of (25)^{1/4}. Try 5 iterations. 3) Fit the polynomial using Lagrange's interpolation method for the following data: (-1, 7), (1,5), (2,15) 4) Determine the values of y for x = 0.02, given that y(0) = 1 and y' = y+x² 	[21]	C01, C02	ВТ1. ВТ3
Q.3	 (i) Euler method. Step size is 0.02. Answer in short: (1 mark each) (i) Euler method solves order differential equation. (first / second) (ii) Write difference between Jacobi and Gauss-Seidel method. (iii) package is useful in drawing graphs in python. (matplotlib / scipy) 	[3] [12]	CO2, CO3	BT3. BT4
Q.4	 Attempt Any TWO: (6 Marks each) 1) Apply Simpson's 1/3 rule to find the integral I = ∫₀¹ √1 - x² dx for 10 subintervals. Find h using n = 10. 2) Consider the differential equation y' = -y, with the initial condition y(0) = 1 and step size is 0.01. Find solutions y1, y2, y3, and y4 using Euler's method. Find exact solution and compare it with numerical solution. 3) Using least square method, find the values of a0 and a1 so that y = a0 + a1 x fits the data given in the table. 	()	C03. C04	вт3. в14

6.7

2.9

1.0

У

4.8

8.6